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A SYSTEMATIC APPROACH TO COMBUSTION MODEL REDUCTION AND LUMPING

I. Background.

Extensive effort over many years has gone into the development of

combustion models with the long-range aim of executing them in a practical

fashion for engineering combustor design. The overall problem breaks into

two strongly coupled -Pmonents involving fluid mechanics and chemical

kinetics. From a modeling perspective the number of dependent variables

essentially determines the computational difficulty and the number of

reactive species involved is generally the key factor. Thus, there is an

enormous impetus to arrive at practical, as well as accurate, models of the

reactive-transport processes that are reduced to their essential structure.

This goal has been a long standing one in the field and is of rising

significance due to recent advances in computational engineering

applications.

Formally, the topics of reduction and lumping of kinetic systems address

the problems stated above. Unfortunately until now there has been little

systematic guidance on how to take a given problem and reduce its complexity

in a systematic manner. Empirical rate laws have been employed with limited

success, and the traditional use of the steady state approximation is often

of limited value. The present research is founded on the desire to

systematically develop reduction and lumping tools for producing simplified

chemical and t:ansport models in different combustion and kinetic

environments. Secondly, we desire to create constructive techniques for both

assessing 0-c deerpc to wb.ch a reactive mechanism may be lumped and
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providing a concrete means for achieving that goal in favorable cases.

Although much progress has been made and significant steps in these

directions were successfully performed during the tenure of this grant, much

still remains to be pursued.

II. Summary of the Completed Research

The terms lumping and reduction are used here to denote two distinct

types of reactive-transport model simplification. Lumping refers to a

contraction or possibly elimination in the number of dependent variables

(i.e., chemical species) while reduction refers to all other simplifications

in the coupled kinetic system (i.e., an elimination of insignificant reactive

steps, etc.). In some cases lumping may result from a direct elimination of

identified insignificant species while in other cases lumping may be achieved

by the creation of accurate effective reactive mechanisms. This distinction

alone generally calls for the use of different techniques to achieve the dual

goals of lumping and reduction. Furthermore, the overall complexity of the

problem has led us to pursue three distinct approaches. Each has its own

merits and has been developed to differing degrees of achievement. A summary

of each technique and their respective capabilities is given in this section,

while in Section III, a synopsis of the specific projects is presented in the

format of an abstract of each of the works.

A. LUMPING AND REDUCTION BASED ON SENSITIVITY ANALYSIS TECFNIQUES. Serious

attempts at developing sensitivity analysis for combustion kinetics goes back

some fifteen years, with much of the basic developments occurring at

Princeton. In essence, sensitivity analysis provides a means for
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quantitatively assessing the overall relationship between the pool of

dependent and independent variables in a reactive-transport system. In the

present context, this assessment is achieved by computing a family of

sensitivity coefficients which are gradients relating one variable tc

another. Thus, as an auxiliary component to performing the modelling alone,

separate codes have been written to efficiently compute this analysis

information. Although partial derivative sensitivity coefficients are used

as a quantitative measure of the variable relationships, the results actually

can be interpreted as the response of the reactive-transport system to a

perturbation of one of its variables. In the development of these tools, it

was recognized early on that this perturbation-response relationship should

contain valuable information for identifying the significant and

insignificant portions of reactive models. This identification can be

focussed on lumping, where the goal is to identify species playing

insignificant roles, or on reduction, where a singling out of insignificant

rate constants or transport coefficients is the objective. These techniques

have now been implemented to a rather high level, with a number of cases

showing the capability of achieving significant simplifications. An

intriguing result observed during this development was the presence of

scaling and self-similarity behavior amongst the sensitivity coefficients in

strongly coupled exothermic combustion systems. It has been argued that the

presence of this surprising system behavior is a strong indicator that

lumping and reduction may be successfully achieved.

B. LiNEAR PROJECTIVE TRANSFORMATIONS FOR LUMPING. The need for lumping of

complex reactive systems occurs in other areas besides combustion, and this
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problem was recognized many years ago in the chemical engineering community.

Dating from the mid-1960s, a considerable effort has gone into the

development of linear transformation techniques to project the set of

chemical species into a lower dimensional space while still preserving its

essential character. Almost all of the prior work focussed on linear kinetic

systems for which this approach is almost a trivial exercise. The work at

Princeton has put this theory on a rigorous foundation and, most importantly,

it has extended applications to fully nonlinear chemical kinetic systems

including the presence of transport (refs. 6-10 summarized in Section III).

It was possible to establish the criteria for the existence of

transformations which will achieve exact lumping in a given system. Although

exact lumping is highly unlikely to occur in realistic problems, establishing

the criteria for its existence provided an important step in developing an

algorithm for finding lumping transformations that can approximate exact

lumping to the desired level of accuracy. This work, carried out over the

past six years, represents a milestone upon which to build an even more

broadly applicable theory of lumping based on nonlinear transformations.

Notwithstanding the latter need for further research, the linear lumping

transformation techniques were developed into a well-defined algorithmic

framework for application where appropriate.

C. LIE ALGEBRAIC TECHNIQUES FOR LUMPING. The sensitivity analysis

techniques for lumping in paragraph A above are based on the notion of

examining the response to infinitesimal disturbances of the reactive

transport system. In a similar vein, the use of Lie algebraic methods is

also based on considering the fundamental properties of the generators of
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infinitesimal transformations upon a differential equation system. However,

unlike sensitivity analysis, Lie algebraic techniques extend these

transformations in a global manner for finite disturbances. In reality,

lumping is a finlite altecation of the combustion system, and, in the case of

sensitivity analysis, the coefficients are used as a quantitative indicator

of what finite changes to perform. In contrast, Lie algebraic techniques

hold potential for explicitly tracing the infinitesimal alterations up to a

specific finite level for practical applications. This is a very ambitious

goal; however, it is important to pursue if for no other reason than the

fundamental insight such an exercise provides. Among the three lines of

approach, it is apparent that the Lie algebraic method is both the most

ambitious and at the earliest stage of development. The most important

result emanating from the Lie algebraic research consisted of an

identification of the classes of transformations of a reactive system and

their ability to preserve the topological nature of the evolving reactive

flow. In a more practical vein, specific generators for Lie algebraic

transformations were found which satisfied an imposed degree of accuracy. In

the long term, this approach holds promise for providing fundamental insight

into the ability to lump broad classes of systems and to achieve practical

means for their success.

III. Specific Research Advances

The following material consists of abstracts of the particular research

papers developed during the tenure of this grant. The papers are drawn

together under headings following those listed in Section II above.
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A. LUMPING AND REDUCTION BASED ON SENSITIVITY ANALYSIS TECHNIQUES

1. The Effects of Thermal Coupling and Diffusion of the Mechanism of H2

Oxidation in Steady, Premixed Laminar Flames
I

The work considered the question of why steady premixed laminar flames

can be successfully described by highly reduced models, whereas the

underlying mechanism is inherently complex. The calculations were

performed on H2 -air systems. Sensitivity functions were evaluated and

studied for diffusion-free situations, both isothermal and adiabatic, as

well as for steady premixed flames. In the diffusion-free cases most

reactions of a 38-step mechanism were shown to be influential in a

distinct fashion. The form of the sensitivity functions is, however,

radically changed and renderee self-similar by simultaneous thermal

coupling and diffusion that introduce strong nonlinear coupling among

the variables. Due to self similarity, the mechanism can be reduced to

15 reactions while keeping the temperature profile and the mass fraction

profiles of molecular species almost unchanged in flame calculations.

Furthermore, there exists an invariant subspace in the space of kinetic

parameters such that large parameter perturbations along any vector in

this subspace result in relatively small changes in the computed flame

properties. By giving mechanistic interpretation to such parameter

perturbations, the model can be simplified in many ways. In particular,

a sequence of models was constructed in a stoichiometric H2 -air flame

problem that converge to a 9-step reduced mechanism with quasi steady

state assumptions in radicals except H, thereby resulting in a two-step
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quasi-global model. All these approximations are unfeasible without the

presence of molecular and thermal diffusion.

2. Parametric Sensitivity and Self-similarity in Thermal Explosion Theory
2

Relations between thermal runaway (also called parametric sensitivity)

and self-similarity are studied. Both concepts are sensitivity-related

but deal with system properties that are independent of the choice of

parLicular parameters being perturbed. This independence is emphasized

by proposing a new generalized condition for parametric sensitivity.

Criticality is defined as the point in the parameter space where the

trajectory exhibics raximum sensitivity to arbitrary, unstructured

perturbations applied at the temperature maximum. The condition reduces

to the analysis of eigenvalues of the Jacobian matrix. In addition to

its conceptual generality, the new condition shows that there exists no

critical Semenov number for some values of the other parameters. The

sensitivity functions are shown to satisfy self-similarity relations if

and only if the system exhibits critical or supercritical behavior. The

onset of self-similarity is explained in terms of two properties of

explosion systems, both related to parametric sensitivity. First, the

temperature is the dominant variable, and any perturbation in the system

affects the conversion mainly through the changes induced in the

temperature. This coupling of the variables is shown by decomposing the

sensitivity functions into direct and indirect terms. Second, after

some induction period, the sensitivity equations are pseudo-homogeneous,

i.e., the system becomes relatively insensitive to parameter

perturbations applied at later stages of the reaction. The two



-8

properties enable one to explain self-similarity of sensitivity

functions observed in many explosion and combustion systems. Rclations

to earlier parametric sensitivity and self-similarity conditions are

discussed.

3. A Combined Stability-sensitivity Analysis of Weak and Strong Reactions

of Hydrogen/Oxygen Mixtures
3

Stability and sensitivity analysis are used to examine the

ignition/reaction characteristics of dilute hydrogen-oxygen mixtures.

The analysis confirms the existence of two distinct regions of ignition

and fast reaction previously labelled "weak" and "strong" ignition, both

of whi'h are located in the explosive pressure-temperature domain and

separated by a region related to the "extended" classical second limit.

The stability andlysis is based on an eigenanalysis of the Green's

furntion matrix of the governing kinetic equations. The magnitudes of

the largest (and system controlling) eigenvalue allow the strengths of

the two process to be quantified, giving a clear definition to the terms

"weak" and "strong". The sen~itivities of the largest eigenvalue to the

reaction rate constants of the mechanism pinpoint the elementary steps

controlling the two ignition processes and the subsequent reaction. The

associated eigenvectors yield the directiu, of change in species

concentrations and temperature during the course of reaction. These

vectors are found to 1'e nearly constant during the induction period of

both "weak" and "strong" ignition, thus producing constant overall

stoichiometric reactions. The subsequent reaction of major reactants

associated with "weak" ignition also has a constant overall reaction
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vector, although, different than that during the induction period.

However, the vector describing the reaction of major reactants

associated with "strong" ignition is found never to be constant, but

continuously changing beyond the induction period.

4. On the Use of Green's Functions for the Analysis of Dynamic Couplings:

Some Examples from Chemical Kinetics and Quantum Dyax," '

The utility of individual elements of Green's functions matrices, in the

investigation of dynamic couplings, is illustrated by offering examples

from linear and nonlinear kiILecics and quantum dynamics. The concept f

reduceA Green's functions affords a detailed characterization of the

actual pathways mediating these couplings. Self-similarity behavior

between different elements of the Green's function matrix indicates te

presence of strong coupling between different variables of the model.

We investigate the structure of the entire Green's function matrix to

examine such self-similarity behavior and other simplifying

characteristics of concern fot physical insight as well as for economic

modeling of the dynamic systems. Global structure in the entire Green's

function matrix may be used to reduce the complexity (number of

dependent va' iables) in i model.

5. Sensitivity Analysis of a Steady-stat.,Premxed Laminar CO-H 2- 2 Flame
5

The direct and vpry efficient Newton method for obtaining sensitivities

of two-point boundary value problems is utilized for detailed

exploration of a reacting-diffusing Cu+H,+0 2 steady-state premixed

lamioar flamr.. Sensitivit- coefficients and Green's functions
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cal.ulated for this system offer exhaustive characterization and new

insights into the role of diffusion and exothermicity in carbon monoxide

oxidation kinetics. In particular, the reactions of the hydroperoxy

radical with hydrogen, oxygen and hydroxyl radicals are found to be

extremely important at all temperatures in the fuel lean (40 torr) flame

studiec here. The diffusive mixing of chemical species from the low and

high temperature portions of the flame and the large heats of reaction

associated with the hydroperoxy radicals are found to be responsible for

the increased importance of these reactions.

B. LIINEAR PROJECTIVE TRANSFORMATI2NS FOR LUMPING

6. General Analysis of Approximate Lui'ping in Chemical Kinetics
6

A general analysis (f approximate lumping based on linear

transformations has been developed. This analysis can be applied to any

reaction system with n species described by dy/dt - f(y), where y is an

n-dimensional vector in a desired rc ion 0 and f(y) is an arbitrary n-

dimensional function vector. Here we have considered lumping by means

of a rectangular constant matrix M (i.e., y - My, where M is a row-full

rank matrix and y has dimension n not larger than n). The observer

theory initiated by Lueaberger ..-as formally employed to obtain the

kinetic equations and discuss the propertie-s of the approximately lumped

system. The appro)ximatply lumped kinetic equations have the same form

dI/dt - Mf(MY) as that for the exactly lumped ones, but depend on the

choice of the generalized inverse M of M. The (1,2,3,4) inverse is a



good choice of the generalized inverse of M. The equations to determine

the approximate lumping matrices M has been developed. These equations

can be solved by iteration. An approach for choosing suitable initial

iteration values of the equations has been illustrated in several

examples.

7. A General Analysis of Exact Lumping in Chemical Kinetics
7

A general analysis of exact lumping is presented. This analysis can be

applied to any reaction system with n species described by a set of

first order differential equations dy/dt - f(y), where y is an n-

dimensional vector, f(y) is an arbitrary n-dimensional function vector.

Here we consider lumping by means of an n x n real constant matrix M

with rank (fi<n). It is found that a reaction system is exactly

lumpable if and only if there exist nontrival fixed invariant subspaces

M of the transpose of the Jacobian matrix jT(y) of f(y), no matter what

value y takes, and the corresponding eigenvalues are the same for jT(y)

and jT(Mly). Here the rows of M are the basis vectors of M and M is any

generalized inverse of M satisfying M-IA with IA being the n-identity

matrix. The fixed invariant subspaces of jT(y) can be obtained either

from the simultaneously invariant subspaces of all Ak, where the Ak's

form the basis of the decomposition of jT(y) or by determining the fixed

Ker ({ll(JT(y)-AiIn)ri nj[a + rj)In-2ajjT(y)+(jT(y)) 2 ]rj), where Ai,

a±irj are the real and nonreal eigenvalues of jT(y) and Xi, aj and rj

are usually functions of y;r i, rj are nonnegative integers. The kinetic

equations of the lumped system can be described as d^/dt-Mf(mn). This

method is illustrLted by some simple examples.

I - - - - ,,n, nwnnmn u nnmn nm m
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8. The Determination of Constrained Lumping Schemes for a Reaction System

in the Whole Composition Space
8

Two new approaches to the determination of constrained lumping schemes

have been developed. They are based on the property that the lumping

schemes validated in the whole composition Yn-space of y are only

determined by the invariance of the subspace spanned by the row vectors

of lumping matrix M with respect to the transpose of the Jacobian matrix

jT(y) for the kinetic equations. We have proved that when a part of a

lumping matrix MG is given, each row of the part of the lumping matrix

to be determined MD is a certain linear combination of a set of

eigenvectors of a .special symmetric matrix. This symmetric

matrix is related to M and T where Ak are the basis matrices

of jT(y). It has been shown that the approximate lumping matrices

containing MG with different row number f(i6<n) and global minimum errors

can be determined by an optimization method. Using the concept of the

minimal invariant subspace of a constant matrix over a given subspace

one can directly obtain the lumping matrices containing MG with

different n^. The accuracy of these lumping matrices was shown to be

satisfactory in several sample calculations.

9. Determination of Constrained Lumping Schemes for Nonisothermal First-

order Reaction Systems
9

The direct approach to determining the constrained lumping schemes

summarized in items 6-8 above has been applied to nonisothermal first-

order reaction systems. The constant basis matrices of the transpose of

the Jacobian matrix for the kinetic equations were replaced by a set of
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rate constant matrices at different temperatures which properly cover

the desired temperature region. This approach allows for the

consideration of a distribution of temperatures as well as directly

incorporating an energy balance equation. As an illustration, the

technique was successfully applied on a model for petroleum cracking.

10. A General Lumping Analysis of a Reaction System Coupled with Diffusion
I0

A general lumping analysis of a reaction system coupled with diffusion

is presented. This analysis can be applied to any reaction system with

n species for both steady-state and transient conditions. Here we

consider lumping by means of an n x n constant matrix M with rank

n(i<n). When the diffusivity is independent of position and

concentration vectors r and y, it is found that under steady-state

conditions a reaction system having species concentration vector y(r)

coupled with diffusion is exactly lumpable if and only if there exist

nontrival fixed jT(y(r))Dl invariant subspaces M(here jT(y(r)) is the

transpose of the Jacobian matrix for the chemical reaction rate vector

f(y(r)) and D-1 is the inverse of the constant effective diffusivity

matrix), no matter what value y(r) takes; under transient conditions

there exist simultaneously D- and jT(y(r,t))-invariant subspaces M.

When D is a function of position or concentrations, M is simultaneously

invariant to jT(y) and D(r), D(y(r,t)). The same approach to determine

the constrained approximate lumping schemes for a non-diffusion system

can be used in a reaction-diffusion one except that the constant basis

matrices Ak's of jT(y) are replaced by Bk-AkD "I under steady-state

conditions or the extra matrix D is added under transient conditions.
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For nonconstant D, the basis constant matrices Di's of D(r), D(y(r)) or

D(y(r,t)) are added.

C. LIE ALGEBRAIC TECHNIQUES FOR LUMPING

11. Lie Algebraic Factorization of MultLvariable Evolution Operators:

Convergence Theorems for the Canonical Case
11

This work is devoted to establishing the convergence theorems for the

canonical case of the Lie algebraic factorization of multivariable

evolution operators. The definition and various properties of

C-approximants are given in a companion paper. The theorems presented

in this paper give some sufficient conditions for the convergence of the

-approximant sequences. Proofs are given for a specific region of the

variables space appearing in the Lie operator and the theorems are

useful for many practical applications.

12. Lie Algebraic Factorization of Multivariable Evolution Operators:

Definition and the Solution of the Canonical Problem
12

We have recently shown that the factorization of certain Lip algebraic

evolution operators into a convergent infinite product of simple

evolution operators is possible for one-dimensional cases. In this

paper, we deal with the multivariable case. To this end, we formulate

the factorization for the general case, then we show that most of the

practical problems can be brought to a canonical one. The canonical

problem has nothing different in concept but the relevant partial
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differential equations to be solved can be easily handled. Two simple

illustrative examples and the concluding remarks complete the work.

13. Global Sensitivity Analysis of Nonlinear Chemi.al Kinetic Equations

Using Lie Groups: I. Determination of One-Parameter Groups
1 3

We introduce one-parameter groups of transformations that effect wide-

ranging changes in the rate constants and input/output fluxes of

homogeneous chemical reactions involving an arbitrary number of species

in reactions of zero, first and second order. Each one-parameter group

is required to convert every solution of such elementary rate equations

into corresponding solutions of a one-parameter family of altered

elementary rate equations. The generators of all allowed one-parameter

groups are obtained for systems with N species using an algorithm which

exactly determines their action on the rate constants, and either

exactly determines or systematically approximates their action on the

concentrations. Compounding the one-parameter groups yields all many-

parameter groups of smooth time-independent transformations that

interconvert elementary rate equations and their solutions.

14. Global Sensitivity Analysis of Nonlinear Chemical Kinetic Equations

Using Lie Groups: II. Some Chemical and Mathematical Properties of the

Transformation Groups
14

This paper establishes a number of properties of transformation groups

that map elementary kinetic equations into new elementary kinetic

equations with altered rate constants. The chemical significance of the

transformations is assessed by applying them to systems involving two
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reacting species. There are then twelve one-parameter groups of

mappings. Some mappings may be used to study the effects of changes in

input/output fluxes on concentrations and their compensation by changes

in other rate constants. A number of mappings transform nonlinear

kinetics into approximately linear kinetics valid in regions larger than

those obtained by standard methods. In some cases, the linearization is

globally exact. Some mappings created lumped concentration variables

and may be used to systematically reduce the number of manifest

concentration variables in nonlinear, as well as linear, kinetic

equations. The global mappings may be characterized by the functions of

rate constants and functions of concentrations that they leave

invariant. Although they produce large changes in rate constants and

concentrations, none of these mappings change the topology of

concentration phase plots as they map a phase plot determined by one set

of initial conditions and rate constants into that determined by

transformed initial conditions and rate constants. Metrical properties

of the concentration maps generally depend upon the accuracy with which

the group generators are approximated; systematic methods for their

improvement are sketched.
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Appendix A

1. Effects of Thermal Coupling and Diffusion on the Mechanism of H2
Oxidation in Steady Premixed Laminar Flames, S. Vajda, H. Rabitz, and
R.A. Yetter, Comb, and Flame, 82, 270 (1990).
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Effects of Thermal Coupling and Diffusion on the Mechanism
of H2 Oxidation in Steady Premixed Laminar Flames

S. VAJDA and H. RABITZ

Department of Chemistry, Princeton University, Princeton, NJ 08544

and
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The article considers the question why steady premixed laminar flames can be successfully described by highly
reduced models, whereas the underlying mechanism is inherently complex. The calculations are performed on
H,-air systems. Sensitivity functions are evaluated and studied for diffusion-free situations, both isothermal and
adiabatic, as well as for steady premixed flames. In the diffusion-free cases most reactions of a 38-step mechanism
are shown to be influential in a distinct fashion. The form of sensitivity functions is, however, radically changed
and rendered self-similar by simultaneous thermal coupling and diffusion that introduce strong nonlinear coupling
among the variables. Due to self-similarity, the mechanism can be reduced to 15 reactions, while keeping the
temperature profile and the mass fraction profiles of molecular species almost unchanged in flame calculations.
Furthermore, there exists an invariant subspace in the space of kinetic parameters such that large parameter
perturbations along any vector in this subspace result in relatively small changes of the computed flame properties.
By *iving mechanistic interpretation to such parameter perturbations, the model can be simplified in many ways. In
particular, a sequence of models is constructed in the stoichiometric H,-air flame problem that converge to a
nine-step reduced mechanism with quasi-steady-state assumptions in radicals except H, thereby resulting in a
two-step quasi-global model. All these approximations are unfeasible without the presence of molecular and
thermal diffusion.

INTRODUCTION assumption that the two latter processes will ad-
mit the use of simplified kinetic models [3). In

It was a well-known truism among kineticists that fact, the computational cost of a treatment involv-

"It .-e wishes to understand combustion reac- ing a detailed mechanism would be too great in

tions. one does not study combustion" [1]. A many multidimensional applications. In addition,

detailed understanding has been achieved for the existence, multiplicity, stability, and structure

many combustion reactions (see, for example. of traveling-wave (steady-flame) solutions are

Ref. 2), and now we face the problem of using difficult to explore solely via simulations, and the

this large amount of kinetic information when asymptotic-analytic treatment of highly reduced

modeling a particular process with coupled ki- models with one or two global reactions has had

netic. thermal, and diflsion phenomena. Most an enormous impact on the understanding of these

results of combustion science are based on the phenomena (see Ref. 4 and the contributions to

Copyright (0 1990 by The Combustion Institute
Published by Elsevier Science Publishing Co., Inc.
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Refs. 5 and 6). Recerwiefforts'have been devoted The mechanism is shown to be inherently com-
to systematic reduction of combustion mecha- plex, i.e., most reactions of the starting mecha-
nisms [7-91, offering procedures for constructing nism are influential and should be retained. In
global stoichiometric and kinetic equations section 5 we proceed to the adiabatic, diffusion-
through the use of simplifying assumptions such free s, stem to deternine the influence of thermal
as qzasi-steady-state relations for certain inter- coupling on the relative importance of elementary
mediates and partial equilibrium of certain reac- reactions. Diffusion is first considered in section
tions. 6, where sensitivity functions for the steady, iso-

Although emphasizing the success of simplified baric, quasi-one-dimensional, premixed laminar
models in combustion, it is interesting to recall I1,-air flame are computed and studied. Though
the somewhat contradictory status of the the temperature is known to be a dominant vari-
quasi-steady-state approximation (QSSA) in able in combustion processes, we show that only
chemical kinetics. Though the QSSA has been the the similtaneous "ffects of thermal and transport
most important technique in elucidating reaction phenomena change he form of the sensitivity
mechanisms since its formulation by Bodenstein, function, significantiy, leading to theii self-simi-
its validity and usefulness have also been ques- arity. This interesting property [27J is exploited
tioned [10-141, and considerable efforts have been for mechanism reduction and for kinetic model
devoted to formulating conditions for its use (see, simp~ification in sections 7 and 8, respectively. In
e.g., Refs. 15-20). It is easy to verify that many particular, the concept of self-similarity enables
combustion reactions, with radical concentrations us to explain the validity of simplifying assump-
comparable to those of the reactants and prod- tions in steady premixed flames mat would be
ucts, do not pass these tests. Further factors that completely unfeasible in diffusion-free situations.
might invalidate the QSSA treatment are an overly Although numerical resuls are presented mostly
short residence time in the flame for the adical for the stoichiometric H2-air flame, we try to
concentrations to reach steady-state values, and draw more general conclusions by subsequent
the diffusion of radicals away from the regions of theoretica-I analysis.
maximum radical concentrations [3. p. 1291.

In spite of the above problems, excellent pre-
dictions have been reported in flame calculations Reaction Mechanism and Flame Model
involving the QSSA (e.g., [7, 8, 21, 221). The
analysis of this apparent contradiction is the main The elementary reactions in the mechanism of H2
issue of the present article, considering the exam- oxidation have been extensively studied and docu-
ple of H2 oxidation and generalizing the numeri- mented. The special interest in this system is due
cal results. Our first goal is to study the influence to the fact that although the mechanism is much
of heat release and diffusion on the relative im- smaller than for hydrocarbon oxidation, the same
portance of elementary reactions. The techniques reaction steps are also essential for the combus-
involved are sensitivity analysis, now a routine tion of the latter ones. In addition, H2 is itself a
tool for selecting the most influential part of a practical fuel, currently being considered to fuel
mechanism [7, 23, 24], and principal component the aerospace plane.
analysis, which also reveals the applicable simpli- The mechanism is not discussed here because
fying assumptions [25, 261. there exist a number of comprehensive reviews

The article is organized as follows. In section 2 [2, 281. The reactions listed in Table 1 as input
we list the elementary reactions used here to data for the chemical kinetics interpreter of the
describe H2 oxidation under different conditions CHEMKIN program [291 are based on Refs. 2
and write the governing equations. Section 3 is a and 30, and they represent the influential subset
summary of computational methods. To study the of a much larger set of reactions that can occur
"pure" kinetic phenomena, in section 4 the theoretically [311. For completeness we consider
isothermal, diffusion-free situation is considered. 19 pairs of forward/backward reactions, although
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TABLE 1

Reaction Mechanism and Arrhenius Parameters for Hydrogen Oxidation

No. Reactiona.b AC n E

1. H+O 2 -O+OH 1.64(14) 0 15470.
2. O+OH-H+0 2  0.89(11) 0.387 -1689.
3. O+Hz-H+OH 5.08(4) 2.67 6292.
4. H+OH-.O+H 2.88(4) 2.64 4473.9
S. H2 +OH-H 20+H 6.30(6) 2.00 2961.
6. HZO+H-H 2 +OH 6.77(7) 1.89 18291.3
7. O+HO-OH+OH 3.98(9) 1.32 1t150.8
8. OH+OH-O+H 20 2.10(8) 1.40 -397.4
9. H+H+NX- 2 +M 1.08(20) -1.67 822.7
10. H2 +M-H+H+M 4.58(19) -1.4 104400.
11. O+O+M-0 2 +M 6.17(15) -0.5 0.
12. 0 2+M-O+O+M 4.94(17) -0.65 118909.
13. O+H+M-OH+M 4.72(18) -1.0 0.
14. OH+M-,O+H+M 1.13(18) -0.76 101751.
15. H+OH+M-H 20+M 2.25(22) -2.0 0.
16. H20+ M-,H+OH+ M 1.02(23) -1.84 118899.
17. H +O + M-HO2 + M 2.00(15) 0. -1000.
18. H0 2 + M-H+02 + M 4.47(15) -0.074 ;0388.9
19. H+H0 2-H 2 +0 2  6.63(13) 0. 2126.
20. H2+0,-H+HO2  1.2rs(13) 0.35 54305.7
21. H+HO2-OH+OH 1.69(14) 0. 874.
22. OH+OH-H+HO2  5.39(10) 0.71 34078.4
23. H0 2 +OH-H 20+0 2  1.45(16) - 1. 0.
24. H20+O.-HO2 +OH 2.94(16) -0.76 67510.4
25. HO-+ O-"02 +O1 1.81(13) 0. -397.
26. 0 2+OH-HO2+O 1.93(12) 0.32 49965.3
27. HO 2 + H0 2-H 20 2 +0 2  1.00(13) 0. 1000.
28. H20 2 +0 2 - HO2 + HO, 1.22(15) -0.36 34715.7
29. H2 02+OH-'H 20+HO2  7.00(12) 0. 1430.
30. H2 0+ H0 2-H 20 2 + OH 1.16(11) 0.6 35224.5
31. H2O,'+ H-H 2O + OH 1.00(13) 0 3590.
32. H20+OH-H 20 2+H 5.30(7) 1.31 70588.8
33. H702 + H-HO2 + H2  4.82(13) 0. 7948.
34. H02 + H2-H 20 2 + H 7.45(10) 0.71 26411.4
35. H20 2 +M-OH+OH+M 1.20(17) 0. 45500.
36. OH + OF + M-H2O2 + M 1.40(11) 1.15 -6403.9
37. O + OH + -"HO2 + M 1.00(17) 0. 0.
38. HO, + M-O + OH + M 7.49(19) -0.47 68546.6

[M] = [N2 
- 

[021 + 16[H 201 + 2.51H 2] + [HO] + IH20 21 + [H] + 101 0 [OH].
b Units are centimeters, moles, seconds, and calories.

Numbers in parentheses denote powers of ten.

one of the reactions in certain pairs is negligible culated from the equilibrium data of the JANAF
under all conditions studied in this article and are Thermochemical Tables 1321. The rate coeffi-
omitted as part of the mechanism reduction pro- cients follow the modified Arrhenius temperature
cess (see below). As detailed in Ref. 30, in each dependence
pair we choose the rate of that reaction (forward k T = ATJe -E'IRT (1)
or backward) for which more reliabie data are A
available, whereas the other rate constant is cal- with the parameters A j, n ,, and E, listed in
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Table I being consiftnf with th equilibrium and
data.

Our formulation of the premixed flame prob- dT dYk,
-- (L) = 0, -(L) = Ok = 1. 2, K,

lem closeiy follows the one given by Smooke dx dx
[33-351. Upon neghecting viscous effects, body (7)
forces, radiative heat transfer, and the diffusion
of heat due to the concentration gradients, the where Tb is the temperature of the unb!rned gas,
equations governing steady, isobaric, one-dimen- and the known mass flux fraction of the kth
sional flame propagation are species is defined as

M = pu =const, (2) P Yk Vk (8)

dYk -_d ~

dx -- (pYkVk)+ As suggested by Smooke [34, 351, the mass flow
k = 1,2 .. K, (3) rate M in a freely propagating (adiabatic) flame

dT 1 d dT is determined by introducing the additional dif-

M_ -Xferential equation
dx C_ dx f

P ~dM
I K dT - =0, (9)

- p Z YkVkCp.k
and he tundary condition

I K

--- ZwkhkWk, (4) T(xf) = Tf, (10)Cp k=1

coupled with the equation of state where xf is a specified spatial coordinate 0 < xf,

< L, and Tf is a specified temperature. To study"

PW FVthe diffusion-free system we set Vk = 0 and X
P = RT (5) 0 in Eqs. 3 and 4. In this case the mass flew rate

AM is assigned, and we obtain an initial value
In these equations x denotes *he independent problem with the initial conditions in Eq. 6.
spatial coordinate, M/ is the (constant) mass flow where Ek = Yk according to Eq. 8. In calcula-
rate, T is the temperature, Yk is the mass frac- tions with a fixed temperature profile (e.g., in the
tion of the kth species; P is the pressure, u is isothermal case) only Eqs. 3 are considered.
the velocity of the mixture, p is the mass density,
Wk is the molecular weight of the kth species, Methods of Analysis
W is the wean a1 olecular weight of the mixture;
X is the thermal conductivity, cp. k is the specific The initial value problems are solved by a semi-
heat of the kth species at constant pressure, Wk is implicit Runge-Kutta method [361. Tne nor. al-
the molar rate of production of the kth species ized sensitivity coefficients a In Ykja In A -nd
per unit volume, hk, is the specific enthalpy of a In T1 In A, a;e computed with a decomposed
the kth species, and Vk is the diffusion velocity direct method [371 in conjunction with the same
of the kth species, approximated with a Fickian ODE-solver. The required derivatives are gener-
relationship [341. As in Refs. 34 and 35. the ated by subroutines of the CHEMKIN package
flame problem is posed on the finite interval [291.
0 _< x :s L. The boundary conditions ;re given The solution of the flame problem involves a
by finite difference approximation of the derivatives

in Eq,. 3 and 4 on an adaptively determined
T(0) = T,- Yk(0) = Ek(0), k = 1, .... K computational mesh 133-351. As in Ref. 35. we

(6) determine the value of AM for the adiabatic flame
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problem and compute'4the sensitivity coefficients pl, where i= 1. n, j = 1, . ., q, I=
dIn uid In Aj. Then M is fixed at the obtained 1 .... r, and r denotes the number of the pa-
value, and the sensitivity coefficients rameters. Then the Gauss approximation, well
a In Yk/d In A) and a In T/a In A, are com- known in nonlinear least squares parameter esti-
puted. ii addition to a slightly different reaction mation, yields
mechanism, the only deviation from Ref. 35 is
that independent parameter perturbations are con- Q(a) = 0(a) = (A)TsTs(Aa) (12)
sidered in the sensitivity analy is. Therefore, we where a I
obtain a sensitivity c, fficient for each elemen- (I
tary reaction separately, instead of the total sensi- a* (see [25] for details). Now we introduce the

tivity coefficients used in Refs. 35 and 38. Hav- new coordinates = UToa in the space of loga-

ing separate sensitivity functions is of consider- rithmic parameters, where U denotes the matrix

able importahce for the purposes of this article, of the normalized eigenvectors of STS. and the

particularly for the analysis of simplifying as- 's are called principal components. In terms of

sumptions. Jhese new coordinates the quadra' ic function in

YAth 10 variables (9 species plus the tempera- Eq. 12 is transformed to the normal form

ture), 38 rate coefficients, and 10 futher parame- r

ters (the thermal conductivity X and 9 diffusion Q(a) = M. Ai(C)' (13)

coefficients), each sensitivity calculation results in i=i

480 sensitivity functions, in addition to the 48 where AVI = UT Aa, and X1 > X2 > ... ">X,
flame speed sensitivity coefficients. It is a form- are the eigenvalues of the matrix STS. Equiion
idable task to analyze such a large amount of 13 gives a decomposition of the space of logarith-
numerical information. In addir;on, we show that mic parameters ai into "influential" and "nonin-
the simple inspection of the sensitivity functions fluential" subspaces. If we make a step of unit
may be somewhat misleading. Principal compo- length from the point at along an eigenvector u ,
nent analysis [251 offers a compact way of ex- i.e., A i = 1, then O(W), and hence Xi measures
hibiting the kinetic information hidden in sensitiv- the significance of reactions that are present in the
ity results. The method is based on introducing a principal component Oi. Principal components
response function of the form corresponding to the large eigenvalues define the

influential part of the mechanism.
, Y(xj,p)- Yi(xj,pO)12 Important mechanistic interpretation cap be

QP = Y _ " Y(x,) I given to certain forms of eigenvectors. For exam-
j-- i=1 t~ ple, assume that the normalized eigenvector u,

( 1) corresponding to the largest eigenvalue X, is given
by ui = (0.707, - 0.707, 0,..., 0)T. To move

where Y,(xj, p) denotes the ith variable (i.e., along u, we select Ac, = - Ace, while the other
mass fraction or temperature) of interest at the parameters are inperturbed. This implies In P 2
mesh point x1 and parameter value p, with p' + In p, -- In p, + In p*, and hence moving
being the nominal parameter value where the aong the curve pI P2 = const in -he space of
analysis is carried out. In Eq. 11, q and m, original parameters. Thus, the largest change in
respectively, denote the number of mesh points the response function Q is attained by increasing
and the number of variables considered in the one of the parameters, say p,, while decreasing
principal component analysis. The function Q(p) P2 in order to keep their product constant. This
is then a measure of the totai change in the will be the typical situation we find with p, and
variables Y, .... mY, brough. about by the P2 denoting the rate constants of competing reac-
variation Ap = p - p' in the parameters. Let tions.

S denote the m x q) x r matrix -,f the normal- Important conclusions can be drawn also from
ized sensitivity coefficients adIn y,(xj, p*)/ In the existence of the eigenvector ui = (0.707,
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0.707. 0. 0 ) T .rresponding to a small slightly above the explosion limit. The selected
eigenvalue Xi  0. The line Ac1 = Au defines mass flow rate is A = A.175 g cm- 2 s- , which
the curve p1 /p, = const in the space of the origi- gives the flow speed u = 631 cm s - ' at the cold
nal parameters. Since X, = 0, we have Q(u) = 0 boundary. The mass fraction profiles are shown
along this curve. Thus, the response function in Fig. 1. The normalized sensitivity coefficients
(Eq. 11) depends only on the ratio P1/P2 and a In Yj/a In Ai have been computed at q = 30
does not depend on p, and P2 separately. If p, equidistant mesh points for L = 10 cm, and all
and p2 are the rate coefficients of a for- species except N, are considered in the principal
ward/backward reaction pair, then this clearly component analysis. Thus, m = 8 in Eq. 11, and
indicates the validity of partial equilibrium as- the threshold value for "small" eigenvalues is
sumption. Uncovering the dependencies among Xmi, = 2.4 x 10- . The eigenvalues exceeding
the parameters, principal component analysis this limit and the corresponding principal compo-
proved to b very useful for uncovering, con- nents are listed in Table 2. As discussed in sec-
firming, or denying the validity of simplifying tion 3, the form of the eigenvector u, correspond-
approximations [25, 261. ing to the very large eigenvalue X, clearly shows

As discussed in Ref. 25, an eigenvalue Xi is that the most important part of the mechanism is
classified as "small" if Xi < l0- 4 mq. Though the competition of reactions 1 and 17. The corre-
this is an approximate rule, reactions that are sponding sensitivity functions of H. are so large
present only in principal components correspond- that we had to plot them separately from the
ing to small eigenvalues usually h ,,! little influ- others in Fig. 2. The further most important
ence on the behavior of the systeri.. reactions are 21, 19, 3, 5, 20, 27, 35, 31, 2, 15,

and 37, which appear in the principal components

Isothermal, Diffusion-free Conditions. 02-41o. The sensitivity functions of H2 with
respect to the rate constants of these reactions are

The kinetics of stoichiometric H,-air system has shown in Fig. 3. %
been studied at P = 1 atm and T = 920 K, The 16 influential principal components in

TABLE 2

Principal Components for Stoichiometric Mixture at T = 920 K, Mole Fractions for All Species

No. Eigenvaluea Parameters in the Principal Component5

1 2.64(+7) 110.721, 17[-0.691

2 3.92(+3) 1[-0.301, 171-0.301, 191-0.461, 2110.771

3 1.85(+2) 110.541, 3[0.241, 17[0.58], 19[-0.421, 2110.211
4 1.19(+2) 310.51], 510.521, 19[0.291, 271 - 0.251, 35[ - 0.281
5 3.51(+ 0) 3[ -0.521, 510.791
6 3.40(+ 1) 110.241, 3[-0.60], 51-0.251, 1710.25], 1910.31]. 20[-0.251
7 3.29(+ 1) 2010.881, 351- 0.371
8 2.21(+ 1) 1910.20], 2010.29]. 27[-0.341, 3510.801
9 9.90(+0) 1910.491, 2110.391, 2710.711
10 7.11(+0) 210.661, 1510.541, 311 - 0.281, 3710.221
11 4.37(+0) 210.271, 2710.311, 3110.551, 3310.241, 3610.771
12 3.17(+0) 3410.951

13 4.16(-I) 2910.211, 31[0.511, 3310.231. 3610.771
14 2.04(-1) 21-0.481. 810.351. 15[0.541, 251-0.551
15 7.92(-2) 2[ - 0.421, 81 - 0.231, 15[0.461, 2510.551, 3710.411
16 2.34( -2) 710.231. 810.221, 231 - 0.201, 2510.261, 29[0.77], 311 -- 0.371. 371 -0.231

Numbers in parentheses denote powers of ten.
Numbers in brackets denote the coefficients of the parameters in the corresponding principal component.
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Fig. 2. Normalized sensitivity functions of the H 2 mass traction for reactions I and 17 in the
isothermal system.
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Fig. 3. Normalized sensitivity functions of the H2 mass fraction for the further most

important reactions in the isothermal system.

Table 2 contain only 21 steps { 1, 2, 3, 5, 7, 8, nonzero ratings give an excellent approximation
15, 17, 19, 20, 21, 23, 25, 27, 29, 31, 33, 34, for the concentrations of these "observable"
35, 36, 37} of the 38 in the starting mechanism. species. In our previous articie [251 it was, how-
The mechanism of the 21 reactions gives rise to ever, shown that considering only certain species
solutions that deviate less than 5% from the solu- can lead to erroneous conclusions in sensitivity
tions of the complete model for all species (in- analysis. Thus the approach has no general valid-
cluding the radicals) at all points of the consid- ity but is still worth a try. Therefore, we com-
ered interval [0, 101 cm. puted the principal components restricting consid-

We would like to further redu..e the mecha- eration to the species H, 0 2, and H O, consid-
nism, even with the price of large errors in the ered observables in this work. As expected, a
radical concentrations. It is expected that further number of further reactions appears to be dis-
dispensable reactions can be found by restricting pensable. Solving the kinetic differential equa-
consideration to the sensitivity functions of those tions we learned, however, that any further re-
species whose behavior is to be preserved. In duction of the 21-step mechanism results in large
some cases this approach is very successful. For concentration deviations not only for the radicals
example, Edelson and Allara [391 ranked the 98 but also for the "observable" species. For exam-
reactions of a low-temperature propane pyrolysis pie, steps 7 and 23 are slightly influential accord-
mechanism according to the absolute values of ing to Table 2 (they appear only in the principal
the sensitivity coefficients, computed only for a component C'I6) and seem to be dispensable when
few species considered as experimental observ- considering only the sensitivities of the "observa-
ables. It can be verified that the 52 reactions with bles." Nevertheless, their elimination gives more
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than 10% errors in the concentrations of the latter The minimal mechanism becomes even more
species. Because we want to find the simplest complex if we want to extend its validity also to
mechanism possible, this result is disappointing higher temperatures. Calculating the sensitivities
but easy to explain. Although the propane pyroly- at T = 1500 K and performing the principal
sis mechanism in Ref. 39 consists of several component analysis shows that the set of influen-
weakly connected subsystems (i.e., formation and tial reactions is {1-8, 15, 17, 19-21, 31, 33-37}.
removal of certain species that practically do not Although steps 17 and 19 are much less important
interact with the observable ones and only slightly than at T = 920 K, and several reactions con-
influence the concentrations of the important radi- suming H02 lost their significance completely,
cals), all species in our starting H2 oxidation the importance of the backward reactions 6 and 8
mechanism are strongly coupled through the radi- increases. Thus we must add these two steps to
cal pool. It is exactly this strong coupling among the minitnai mechanism, consisting now of 23
all species tat will enable us to simplify the reactions.
mechanism in the presence of diffusion, as we
show later in this article.

At this point, however, we have to conclude Adiabatic, Diffusion-free Conditions
that the mechanism of H 2 oxidation under well-
stirred isothermal conditions is inherently com- The adiabatic calculations have been performed at
plex. Th. small eigenvalues are not listed in P = I atm and Tb = 920 K at the cold boundary.
Table 2, because they do not reveal any depen- The temperature and mass fraction profiles are
dencies among the retained 21 rate coefficients, shown in Fig. 4. The reaction is confined to a
and hence we must also exclude the validity of very narrow region. The prereaction and postre-
simplifying kinetic approximations such as the action regions are almost isothermal, and the
QSSA. mass fraction profiles are similar to the ones

02 H20
...... ................ .............. ........ ...........

-1.00 T 2600

OH
OOC

0 - ........................................ I......... . ;

2 -3.00 H

H

-- 5.00

., H202

-7.00 900
0.00 0.50 1.00 1.50 2.00

Iength,cm
Fig. 4. Mass fractions and temperature in the adiabatic, diffusion-free system.
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Fig. 5. Sensitivity functions of the temperature for reactions 1 and 17 in the adiabatic
system.

found in the isothermal case for low and high the previous section. This mechanism can neither
temperatures, respectively, be reduced nor simplified through the use of

As shown in Figs. 5 and 6, the temperature is kinetic approximations if we want to reproduce
very sensitive to parameter variations within the the "observable" variables (i.e., the temperature
reaction zone. The nonvanishing "tail" of sensi- and the mass fractions for H2, 02, and H20)
tivity functions indicates the influence of the pa- within 5% errors.
rameters on the adiabatic temperature via a change We introduce a decomposition of the sensitivity
in equilibrium. According to Fig. 5, the dominant functions that shows the role of the temperature
part of the mechanism is again the competition of in the adiabatic system and explains why the
steps 1 and 17 for H', giving rise to a very large mechanism cannot be reduced. For the sake of
eigenvalue in the principal component analysis. notational simplicity write Eqs. 3 and 4 in the

Because the temperature is an important vari- diffusion-free case as
able, we expected that the mechanism could be dYk
some% -!at reduced by eliminating some reactions - = fk( Y 1 .... , YK, T, p),
that do not significantly contribute to the heat dx

release. This expectation, however, failed. As Yk(O) = Yk.b, k = 1 .... K, (14)
confirmed by the outcome of principal component and
analysis, any reaction important in isothermal
oxidation either at low or at high temperature is dT
also important in the adiabatic process. Thus we - = ( YI.. YK, T, p), T(O)= Tb,

dx
need the 23-step minimal mechanism derived in (15)
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Fig. 6. Sensitivity functions of the temperature for the further most important reactions in
the adiabatic system.

respectively. It will be convenient to write the K the matrix differential equatinn
equations in Eq. 14 also in the vector form d Of

-G,(x, x') = -(x)G 1 (x, x')

- = f(,, T, p), (16)
dx + I 6(x - x'),

where Y = ( 1' . , YK )  and f G,(x', x') =0, (18)

(fl,. . . , f) . Differentiating Eq. 16 with re-

spect to the parameter pj we obtain the sensitiv- where I is the K x K unit matrix and b denotes

ity equation the Dirac impulse function (see, e.g., Refs. 40
and 41). In terms of G,(x, x') the sensitivity

d OY Of aY functions are given by
dx Op1  oY "Op

fpx Of OT
Of T+ -p(X) = o G(x, x')-(x') - (x') dx'
OT ap1  Opa 0 Of

+ G(x, x') x') dx'.

where af/oY is the K x K Jacobian matrix of Op1
Eq. 16. As is well known, the sensitivity equation (19)
(Eq. 17) can be solved through the Green's func-
tion matrix G ,(x, x'), which is the solution of Let us now fix the temperature at its adiabatic
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Fig. 7. Adiabatic (solid line) and constrained temperature (dashed line) sensitivity functions
of the H2 mass fraction for reactions I and 17 in the adiabatic system.

profile, i.e., consider the temperature as an exter- coefficients measure the direct, quasi-isothermal
nal variable. Then a T/apj = 0, and the sensitiv- effects of parameter perturbations, the first term
ity functions are reduced to the second term on in Eq. 19 corresponds to the indirect effects (i.e.,
the right-hand side of Eq. 19. Thus this term, the parameter perturbations that change the tem-
called the constrained temperature sensitivity perature profile, which, in turn, affects the mass
function, has a well-defined physical meaning. fractions through the reactions). According to
Figure 7 shows the adiabatic sensitivity function Fig. 7 this indirect influence of the temperature is
(solid curves) and the constrained temperature more important than the direct one in the reaction
ones (dashed curves) of the H2 mass fraction for zone. Equation 19 also explains the form of
the most important steps 1 and 17. It follows adiabatic sensitivity functions. It may be readily
from the temperature profile in Fig. 4 that the verified that for H 2 (the first ,zomponent in the Y
constrained temperature sensitivity functions are vector) the function afla/T is positive in the
essentially isothermal ones, for low and high prereaction zone and negative in the postreaction
temperature in the prereaction and postreaction one. As shown in Fig. 5, aT/dA, I #0 and
regions, respectively. Indeed, the dashed curves a8T/aA 7 # 0 in the postreaction zone, and the
in Fig. 7 are similar to the ones in Fig. 2, both in first integral in Eq. 19 results in the marked
form and magnitude. The only deviation is that "overshoot" of the adiabatic sensitivity functions
the constrained temperature sensitivity functions in Fig. 7.

* of steps I and 17 vanish in the postreaction zone Similar results are found for the other reac-
due to the high temperature, as discussed in the tions. Figures 8 and 9 show the adiabatic and
previous section. constrained temperature sensitivity functions, re-

While the constrained temperature sensitivity spectively, of H2 for the second group of most
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Fig. 8. Adiabatic sensitivity functions of the H2 mass fraction for the reactions considered in
Fig. 6.

important reactions 21, 19, 20, 3, 5, 6, 9, and 2, parameter perturbations is larger by a factor of 3
revealed by principal component analysis. The than the direct, quasi-isothermal pathway, this
constrained sensitivities in Fig. 9 are similar to latter is definitely not negligible. Thus the adia-
the isothermal ones in Fig. 3. It is easy to explain batic system retains all the complexities of the
the deviations: steps 21 and 19 lose their signifi- mechanism that is valid for both low and high
cance, since at high temperature much less HO2  temperatures under isothermal conditions. This
is produced by reaction 17, whereas the back- observation gets added importance in comparing
ward reactions 4 and 6 become more importnt, to the flame problem, where we encounter a
as discussed in the previous section. The "over- completely different ratio of the two terms. We
shoot" of the adiabatic sensitivity functions 21, note that the temperature sensitivity functions
3, and 20 in Fig. 8 follows from the nonvanishing shown in Fig. 6 are similar. The similarity is,
"tail" of the temperature sensitivity functions for however, weaker among the H2 sensitivity func-
these reactions, shown in Fig. 6. On the other tions in Fig. 8, and even such weak similarity
hand, if the temperature sensitivity is small (e.g., was not observed among the sensitivities of fur-
for step 2), then the adiabatic and the constrained ther species, not shown here.
temperature sensitivity functions in Figs. 8 and 9,
r( xectively, are identical, although this is some- Steady Premixed Laminar Flame
\x:t masked by the different scales on the two
plots. Figure 10 shows the solutions of Eqs. 2-5 for the

The most important fact we can learn from the stoichiometric H2 -air flame at P = I atm and
decomposition (Eq. 19) is the relative magnitude cold boundary condition Tb = 298 K. The addi-
of the two terms. Although the indirect effect of tional boundary condition (Eq. 10) is given by
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Fig. 10. Mass fractions and temperature for the stoichiometric flame.
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Fig. 11. Normalized sensitivity functions of the temperature for the most important reactions
in the stoichiometric flame.

T = 400 K at x = 0.05 cm. The adiabatic calcu- tive to the parameters only in a neighborhood of
lation yields the flame speed u = 236.5 cm s-', the flame sheet. This interval is larger than in
which is in the range of experimental data (see Fig. 6 for the adiabatic case, and we see that the
Refs. 21 #and 42 for reviews), though slightly temperature sensitivity functions are similar. The
higher than the one computed in Ref. 35. Corn- most remarkable property found in the flame
paring Figs. 4 and 10 we might assume that calculation is that there exists the same similarity
molecular and thermal diffusion merely "smooth" between the sensitivity functions of all species,
the abrupt changes in temperature and mass frac- and not only of the temperature. For example,
tion profiles. Principal component analysis based Fig. 12 shows the sensitivity functions of the H2

on the sensitivities of all species and the tempera- mass fraction with respect to the Arrhenius pa-
ture shows a similar "smoothing" effect on the rameter Aj of the most important reactions. Al-
relative importance of elementary reactions. Al- though the form of the sensitivity functions is
though the sensitivity functions for steps 1 and 17 different for each of the species, it is almost
are much smaller than in the adiabatic, independent of the parameter being perturbed,
diffusion-free calculations, a large number of re- and we have similarly "regular" plots for each
actions is at least slightly influential for some of species. Thus, by appropriately scaling the sensi-
the species. Figure I i shows the temperature tivity functions of a species, they will approxi-
sensitivity functions for the most important reac- mately fit on a single curve. For historical rea-
tions 5, 3, 1, 17, 37, 6, 2, and 15. The maximum sons the similarity among various variables of a
sensitivities are, however, almost as large for dynamic system (in this case, the sensitivity equa-
steps 21, 19, 4, 7, and 16, not shown in Fig. 11. tions) is frequently called self-similarity [271. The

According to Fig. 11, the temperature is sensi- presence of self-similarity has been demonstrated
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Fig. 12. Normalized sensitivity functions of the H 2 mass fraction for the most important
reactions in the stoichiometric flame.

in several combustion systems, including numeri- previous section we write the K equations in Eq.
cal testing of the relationships [271. 20 as a vector equation

We cap use the decomposition introduced in
the previous section to show that the similarity of L(Y, T, p) = 0, (22)
mass fraction sensitivity functions follows from
the similarity of temperature sensitivity functions, where L = (L ..... L K) and Y =

but our derivation should be slightly generalized. (Y . ., YK). The sensitivity functions of in-
For notational simplicity we write Eqs. 3 and 4 terest are aYi(x, p)/apj, i = l, .... , K, and

abstractly as aT(x, p)/ap, that form the sensitivity matrix
a¥/ap and vector aTlap, respectively. By dif-

Lk( YI ... YK, T, p) 0, k = l, .... , K ferentiation of Eq. 22 these coefficients satisfy the

(20) sensitivity equation

and IaL \ Y IaL \aT A'
I + + - =0,LT( Y, .. ... YK, T, p) =0, (21) "y x a p ) T x a p j  a j.

(23)
where Lk, k = 1,. . , K, and LT denote the
second-order differential operators in Eqs. 3 and where (aL/Y)x, (aLIaT)r, and (aL/aps), are
4, respectively. The corresponding boundary con- differential operators. Similarly to the previous
ditions are given by Eqs. 6 and 7. As in the section, we express the sensitivity coefficients
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Fig. 13. Constrained temperature sensitivity functions of the H 2 mass fraction for the
reactions considered in Figs. I I and 12.

8Y/apj in terms of the K x K Green's function The second term in Eq. 25 stands for the con-
matrix G,(x, x') of the system (Eq. 22), where strained temperature sensitivity funL,;i ns that are
G,(x, x') is defined to satisfy the equation the solutions of Eq. 23 with aT/apj = 0 and the

I adiabatic flame temperature profile as a parame-
aL) ') ') (24) ter-independent external variable. Figure 13

-x' =-l6(x-x). shows the i.onstrained temperature sensitivity
functions of the H2 mass fraction for the same

For convenience we assume that the Green's reactions whose flame sensitivity functions are
function satisfies the same boundary conditions as shown in Fig. 12. According to these plots, there
the sensitivity coefficients aY/apj in Eq. 23. exists a neighborhood fx , x2 ], 0 < xI < x 2 <
Because there are two inhomogeneous terms in L, of the flame sheet such that the first term in
Eq. 23, we have the decomposition Eq. 25 is dominant on [ x , x, 1, whereas the

sensitivities are small outside this interval. There-
dY fL ,aL fore, for any x E[x,, x 21 we haveOpj (x) = G,(x, x

0 x' a- T ay fLi at, a aT

aT [L = (x x') p(x)x
x- ( x') dx' + G,(xx') P 0 OT xa

ap Pj o (26)

XI -8 dx'. We refer to Eq. 26 as the strong coupling approx-
apj (25) imation of the sensitivity function:,, based on the
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proper.y that the pitrnafnter perturbations influ- flame. Second, almost all information on kinetic.
ence the mass fraction profiles almost exclusively parameters derivable from the observation of a
tnrough the change induced in the temperature flame is contained in the temperature data or one
profile. concentiation profile, and relatively little more

The validity of the strong coupling approxima- can be learned from the observations of severa!
tion (Eq. 26) enables us to understand why the concentration variables. This also implies that
self-similarity of he temperature sensitivity func- sensitivity resuits in a flame can be summarized
tions shown in Fig. 12 implies self-sii ilarity of as r numbers, where r is the number of paiame-
,he mass fraction sensitivity functions. Consider ters, for example the values c, = (3TI/apj),mx ,
two parameters pi and pj. By the self-similarity j = 1 . . . r. Indeed, the same coefficients of
of the corresponding temperature sensitivity func- proportionality apply to the sensitivity functions
tions there exists a constant c such that of each variable in the system, and hence the
aT(x, p)/ap) = caT(x, p)/api for all x. Then numbers c,,. . , c,. represent the relative impor-
the linearity of 26 implies aY(x, p)/8pj = tance of elementary reactions. We emphasize that
caY(x, p)/cpi for all xC [x I, x2J, and thus the by neglecting the second term in Eq. 25 this is an
same similarity holds for the sensitivity functions approximation, and the sensitivity functions actu-
of all mass fractions. Although Eq. 26 usually is ally contain somew -tt more information than can
a good approximation, there obviously exist suone be extracted, for e ample, by principal compo-
deviations from perfect similarity due to t'-e ne- nent an. 1t sis.
glected second term in Eq. 25. For example, the Introducing the strong coupling approximation
temperature sensitivity functions for reactions 2 (Eq. 26) we have shown that self-similarity of the
and 15 are almost indistinguishable (see Fig. 11), temperature sensitivity functions implies self-sim-
whereas the sensitivities of the H 2 mass fraction ilarzy of sensitivity functions of all the other
widi respect to the same parameters markedly variables. This is sufficient for the purposes of
differ, as shown in Fig. 12. The deviation clearly the presei.t article, but does not explain why the
stems from the fact that the constrained tempera- temperature sensitivity functions themselves are
ture sensitivity function of YH2 for step 2, though self-similar. Because self-similarity has been ob-
relatively small, is much larger than the one for served in a numb,r of steady flame calculations
step 15 (see Fig. 13). All deviations from the [27, 35, ,', 4,). establishing the mildest _ssump-
perfect similarity in Fig. 12 can be similarly tions additio'ial to the strong coupling approxima-
explainedin terms of the constrained temperature tion (Eq. 25, des,:rves further investigation.
sensitivity functions shown in Fig. 13. The devia-
tions are also clearly shown by principal compo- Seli-Similarityand Mechanism Ki,....ttion
nent analysis. The validity of the strong coupling
approximation (Eq. 26) has a number of pratical In the remainder of the article we exploit self-
consequences. First, modelirg a combustion pro- similarity, in this section for mechanism reduc-
cess with the mcasured te-nperature profile as tion. Our aim is to find the simplest mechanism
input data shoild ix relatively reliable, since that is able to reproduce the "observables." i.e.,
uncertainties in rate coefficients .lightly influenice the flame speed, the temperature, and mass frac-
the comp,.,ed mass fractions. Because this con- tions for H,, 02, and HO, within reasonable
clusion is based on local sensitivity analysis, it errors. As discussed in section 4, a potential
cannot be extended to large parameter variations. method of finding such minimal mech tnism is
Conversely, it is important that the sensitivity re,-ricting considerations to the sensitivity func-
functions computed for a pDescribed temperature tions of the "observable" variables. The ap-
profile (see, e.g. Rcfs. 43 and 44) are not very proach is, however, of no general validity. aad
informative, since eliminating the large first term we failed when trying to further reduce the 23-step
in Eq. 25 will produce results that do not reflect mechanism found in the diffusion-free cases.
the true importance of elementary reactions in the Due to self-similarity the situation is different
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X KTABLE 
3

Principal Components for Stoichiometric Flame. Temperature, and Mole Fractions tor the "Observable" Species. All Rate. and
Transport Coefficients as Parameters

No. Figenvalue' Parantc,-r, in the Principal Component'

1 2.21( +6) 110.21]. 31n.24,. 5 ).48]. 3910.561, 40[-0.321, 4210.391
2 1.98( + 2) 11 - 0.331, 31 - C2'. 51 - 0.521, 3910.451, 401 - 0.281, 4210.361
3 1.38(+2) 4610.991
4 1.54(+ 1) 110.35]. 21-0.451, 3[ 0.211, 61-0.50], 3710.381 J01-0.251
5 7.70(+0) 11-0.211, 510.221, 61- 0.311, 17[- 0.4,,1, 4010.671, 4210.381
6 3.03(+0) 11-0.29], 510.22]. 61- 0.311, 17[-0.401, 401-0.49], 4210.371
7 8.32(- 1) 17[0.811, 42[0.321
6 4. 1(- 1) 110.411. 41-0.211 5[-0.211, 6[0.251, 7[-0.211, 8[0.21j, 1610.201, 391-0.261. 4210.501
9 1.24(- I) 210.431, 310.2C1 , 4I-0.231, 61-0.401, 71-0.21], 810.291, 211-0.43]
10 9.57(--2) 10.411, 410.'I. 610.251, 1510.371, 16[-0.391, 37(-0.351, 4210.211
11 4 2" - 2) 210.38], 410 2.1. 51u.29]. 7[ - 0.27], 810.291, 37[0.57], 381 - 0.291

Numbers in parenmeses uente powers of ten.
b Numbers in brackets denote the coefficients of the parameters in me corresponding principal component.

in the steady premixed flame. Because the sensi- X = mq x 10
- 4 = 3.5 x 10- 2.The eigenvalues

tivity functions are similar, we can restrict con- exceeding this threshold and the corresponding
sideration to a single "observable" when ranking principal components are listed ;,- -qble 3. There
the reactions according to their importance. The are only 15 rate constants pieserT' tnese princi-
ranking will be then valid for all variables up to pal components. These reactio:.s will be of im-
the accuracy of the strong coupling approxima- portance for further analysis ar., lcence are liste
tion. This will enable us te reduce the number of in Table 4.
reactions. For example, restricting consideration Accoring to Table 3, in addition to the rate
to the temperature in. principal component analy- coefficien )f the selected 15 reactions, further
sis yields the mechanism consisting of Steps 1. 3, important parameters are P 39. P40 , P4 . and
5. 17, 2,,37, 6, 21, and 38, in order of decreas- P4 6, i.e.. the thermal conductivity X and the
ing importance. The strong coupling approxima- diffusion coefficients DH,, Do, and DHo. The
tion, i.e., neglecting the second term in Eq. 25
gives, however, up to 10% errors that propagates
into the mass fraction profiles computed from the TABLE 4
reduced mechanism. Therefore, in addition to the Reduced Mechanism of H2 Oxidation
temperature sensitivity function, it is advisable to
include also the ma's fraction sensitivity func- No. Reaction
tions of H,, 0, and H20 in principal component
analysis. The parameters considered in this cal- 1-2 H +O, O+ OH
culation are the Arrhenius parameters A,, 3-4 O+H,-H+OH
• A 38 , the thermal conductivity coefficient X 5-6 H, + OH .- HO + H

denoted by p39, and the diffusion coefficients 7-8 O+HO OH +OH
DH, Do, DH, D o , DOH, DHO, DH,O,, and 15-16 H+OH-M-HO+M

17 H + 0, +M-HO: + MDN,, denoted by P10-P4 . Since we have q = 87 19 H 6HO H, -O:
mesh points in the flame calculation, acid consider 21 H _+H -OH'OH
m = 4 observables in the principal component 37 38 OH + 0 + M - HO, + M
analysis, the cutoff value of the eigenvalues is
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TABLE5

Mechanism Reduction for H,-Air Flames: Deviations of the Temperature and Mole Fraction Profiles

Stoichiometnc Lean' Rich'

Complete 15 steps. Complete 15 steps, Complete 15 steps.
x (cm) "Observable" Mechanism % deviations Mechanism % deviations Mechanism % deviations

T(K) 615.3 0.11 566.5 0.93 599.2 -0.01

0.0544 XH, 2.312(- 1) 1.5: 1.747(-1) 3.09 4.623(-1) 0.15
Xo, 1.501(-1) -1.60 1.646(-I) - 1.88 1.030(-1) -1.74
XH,o 2.498(-2) 6.61 2.448(-2) 4.82 1.879(-2) 12.16

)r (K) 953.9 - 1.68 856.0 -0.65 892.4 -1.19
0.060 XHI 1.702(-1) 3.81 1.293(-]) 4.87 4.139(-) 0.82

X0, 1.397(- 1) - 1.78 1.575(- 1) -2.41 9.251(-2) -2.11
XHO 7.687(-2) -3.07 6.667(-2) - 1.53 5.706(-2) -0.49

T (K) 1503.0 -2.79 1352.0 - 1.85 1307.1 -3.21

0.070 X", 6.745(-2) 7.97 5.302(-2) 8.84 3.148(-1) 0.86
X02 7.306(-2) 3.46 1.126(-1) -0.62 4.114(-2) -5.10

XHo 2.070(- I) -3.52 1.673(- 1) -2.57 1.655(- 1) -4.35

0.0 u (cm s - 1) 236.5 7.06 147.9 11.62 356.3 7.01

Lean mixture boundary conditions: XH, = 0.2495, Xo, 0.1578, XN, = 0.5927, where X denotes the mole fractions.
b Rich mixture boundary conditions: XH, = 0.5000, Xo = 0. 1051, XN, = 0.3949, where X denotes the mole fractions.

influence of the diffusion of H and H 2 on the is able to provide good approximations for the'
combustion rate is well known [2]. The impor- molecular species only if the radicals are pre-
tance of DH2o, which is not coupled with any of dicted well. This is the reason why no reduction
the kinetic parameters according to the principal of the mechanism was possible in the diffusion-
component, 3, is somewhat surprising, and likely free calculations, without the property of self-
stems from the large efficiency factor of H 20 similarity.
(see [M] in Table 1). There is no reaction producing H 2 0 2 in the

The ability of reducing the mechanism is based reduced mechanism, and hence this species can
on the approximation (Eq. 26), which is valid be omitted. Step 20, the only initiation reaction,
only on some interval [x 1, x 21 containing the is also omitted, since the radicals are mostly
flame sheet positioned at x = 0.0544 cm for the supplied by diffusion from the post-flame region.
stoichiometric mixture. The first part of Table 5 This emphasizes that the reduced mechanism ap-
shows the values of the "observables" at some plies only to modeling steady premixed flames,
points of this interval computed with the full i.e., the same system in which the sensitivities
38-step mechanism and the percent deviations used for reduction have been computed. As shown
when reducing the mechanism to the 15 steps in the further columns of Table 5, the reduced
listed in Table 4. We note that in the same region mechanism gives good prediction for the "ob-
the deviations are small also for the radicals, H', servables" also in lean and rich H 2-air flames.
0, OH , and H0 2 , whose seasitivities have not The deviations are larger for the flame speed,
been considered in the principal component anal- which were not considered in principal compo-
ysis. As we conjectured in section 4, the system nero analysis. We discuss this latter problem in
is so strongly coupled that a reduced mechanism the next section.
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TABLE 6

Principal Components for Stoichiometric Flame, Temperature and Mole Fractions for the "Observable" Species, 15 Rate
Coefficients of the Reduced Mechanism as Parameters

No. Eigenvaluea Parameters in the Principal Component"

1 9.35(+5) 1[0.321, 310.38], 5[0.74], 17[0.24]
2 1.91(+1) 11-0.441, 210.48], 610.521, 151-0.201, 371-0.38]

3 4.70(+0) 1[0.44], 5[-0.371, 6[0.351, 1710.691
4 8.05(- 1) 1(0.471, 3[0.271, 6[0.301, 17[-0.661
5 1.62(- 1) 2[0.491, 3[0.271, 41-0.21], 61-0.41], 7[0.23], 810.301, 19[0.21], 211-0.46
6 1.45(-!) 10.26], 410.37], 7[0.24], 1510.39], 161-0.42], 371-0.50]
7 4.91(-2 21-0.32], 41-0.31], 51 -0.22], 61-0.24], 151-0.21], 21[-0.241
8 3.42(-2) 3[0.45], 7[0.43], 81-0.37], 16[0.47], 19[0.29], 381-0.30]
9 1.26(-2) 1[0.23], 3[-0.35], 61-0.34],-7[-0.22], 810.23], 151-0.22], 16[0.42], 2110.22], 37[ -0.45], 381-0.301
10 8.88(-3) 1[0.491, 5[-0.441, 6[-0.30], 16[-0.27], 19[-0.31], 21[0.48]
11 3.92(-3) 110.34], 2[0.55], 3[-0.21], 7[0.251, 8[-0.29], 15[-0.281, 19[-0.29, 3710.211, 38[0.361
12 2.18(-3) 41-0.551, 1510.661, 1610.28], 2110.25]
13 7.80(-4) 4[-0.591, 15[-0.321, 16(-0.481, 19(0.381, 21[0.24], 38[-0.261
14 3.55(-4) 1910.62], 2110.441, 3810.601
15 6.95(-5) 710.71], 8[0.701

a Numbers in parentheses denote powers of ten.
0 Numbers in brackets denote the coefficients of the parameters in the corresponding principal component.

Self-Similarity and Kinetic Model Simplification component C'5, the "observables" depend only
on the ratio k7/k 8, and hence the partial equilit-

In kinetic model simplification we introduce fur- rium assumption is expected to apply to this pair
ther assumptions such as the QSSA to find the of reactions. We emphasize that, based on local
simplest possible models that give tolerable errors sensitivity analysis, any such conclusion should
in flame calculations. For H2 oxidation there be verified by calculation. The simplest way of
exist a number of very simple empirical models testing the validity of the assumption is to multi-
(see, e.g., Ref. 47) that perform relatively well, ply A 7 and A 8 by the same large factor. The
at least for limited regions of the composition "observables" are expected to be almost invari-
space. It is also known that the QSSA applies to ant under such move in the parameter space.
the radicals except H' [211. In this section we try According to column A of Table 7, the parame-
to understand why the simple models work, con- ters A 7 = 100A; and A 8 = 100A;, where A*-,
sidering the stoichiometric H2-air flame as an and A; denote the original (nominal) values,
example. Our starting point is the 15-step reduced give rise to relatively small deviations. However,
mechanism shown in Table 4. As discussed in the flame speed, not considered in principal com-
section 3, mechanistic interpretation of principal ponent analysis, is significantly decreased. The
components corresponding to small eigenvalues second smallest eigenvalue is X,4, and the corre-
may help to identify applicable simplifying as- sponding principal component 0, 4 includes A19 ,

sumptions [25, 261. Considering the "observa- A 21, and A 38 , i.e., the rate constants of reac-
bles" T, YH2, Y0, and YHo, and restricting tions of the reduced mechanism that consume
consideration to the preexponential factors A1 of HO 2 . The only explanation is that steps 17 and 37
the 15 reactions, principal components are listed are rate determining, and the QSSA applies to
in Table 6. The cut-point for small eigenvalues is HO 2. The simplest way to check this assumption
X,,n - 0.035, and there are seven eigenvalues is increasing the values of A19 , A 21 , and A 38

below this threshold. According to the principal by moving along the eigenvector u14. For exam-
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TABLE 7

Model Simplification for the Stoichiometric H2-Air Flame: Deviations of the Temperature and Mole Fraction Profiles

Reduced Mechanism or Modified Model (% Deviations)
Complete

x (cm) Variable Mechanism A B C D E F G

T(K) 615.3K -2.16 -3.33 -2.59 2.12 3.12 2.65 2.71
0.0544 XH2  2.312(- 1) -2.46 -2.12 - 12.50 -2.81 -2.21 1.16 1.12

Xo, 1.501(- 1) 1.93 2.59 5.66 2.46 4.86 4.26 4.26
XH2o 2.49(-2) -6.84 - 11.49 24.82 -9.60 -35.07 -48.67 -49.11

T (K) 953.8 -0.49 -1.67 6.41 8.08 10.07 8.29 8.39
0.0600 XH." 1.704(- 1) -3.58 -2.64 - 15.32 -14.50 - 17,60 -9.38 -9.86

Xo2 1.397(-1) 3.43 5.22 7.02 3.65 9.95 11.31 11.45
XH 2o 7.687(-2) -0.73 -4 84 19.47 17.65 14.25 -6.43 -6.81

T (K) 1503.0 1.26 0.86 15.10 9.05 8,84 4.39 5.12
0.0700 XH2  6.745(-2) -8.33 -6.44 -12.34 -43.32 -54.13 -67.36 -75.34

Xo, 7.306(-2) -0.33 4.04 16.10 -34.25 -37.44 -27.99 -28.66
X"Zo 2.070(- 1) 2.46 1.26 6.71 17.98 22.80 21.78 23.8

0.0 u (cm s -') 236.5 - 12.90 -16.65 -32.30 1.39 -2.33 -1.78 -1.18

0 A: A7 = IOO A7 0,As= 1OO As .

B: A7 = 100 A70 , A s  100 As ° , A1
9 = 10 A,9, A 21 = 5.12 A21', A 39 = 9.28 A 38

0.
C: A17 = 5.27 A170, A 37 = 10 A 37

0, A 3s = 10 A38
° .  I.

D: A, = 1.59A 1
0,A 2 = 2.21A 2

0,A3 = 0.36A 3
0 ,A 4 = 0.06A 4

0,A5 = 1.90A50 ,A 6  1.58A 6',A7 = 805.67A', As =

328.53AS0, A ,, = 1.01 A, 5 ,A ,6 = 0.63A 16 ,A,, = 83.11A,, 0 ,A 2 = 16.75A2, 0,A,, = l.39A3,0,A38 = 19.28A,8
0 .-

E: AI = 0.73 A10, A2 = 1.86A 2
0 , A, = 0.03 A 3

0 , A4 = 0.12 A4
0, A, = 41.40, A50, A 6 = 35.28 A6

0, A7 = 5469.70A70 ,

As = 667.96 Aso, A,1 = 1.39 A 15, A1 6 = 1.14 A, 6 (, A, 9 = 5965.57 A ,9
0 ,A 2, = 1.01 A 2,0, A 3, = 4.92 A 37

0 , A s =

363.58 A 38
0.

F: A, = 0.51.41, A 2 = 0.59A 2
0 , A 3 = 0.00 A3, A 4 = O.OOA 4

0, A, = 371.37, A,A = 97.71 A 6
0,A7 = 1096.70A, 0,

As = 765.14AS°,As = O.OOAIS,A, 6 = 0.00A, 6
0,A 1,9 = 3701.37A,9,A 21 = O.OOA 21°,A 37 = 1.68A 37 °,A 38 = 0.00

A038
0

G: A, = 0.49A, 0,A 2 = 1.08A 2
0,A 3 = 0.00A 0 ,A 4 = 0.00.4,0, A, = 5809.81 As0 ,A 6 = 1132.13A 6 , , A , = 5698.80

A70 ,A = 1038.25A, 0 ,A, 3 = 0.00A 0,A, 6 = 0.00A16
0 ,A19 = 17493.30A, o,A 2, = 0.00A 21

0,A 31 = 4.54A370 ,A 3 s

= 0.00 A31
0.

pie, the values A, 9 = 1OA, 9, A 21 = 5.12 A0, trying to formulate a more-or-less systematic pro-
and A 3s = 9.28A 8 , in addition to the already cedure we emphasize that any simplifying kinetic
increased values of A 7 and A,, result in the assumption can be regarded as a move in the
deviations shown in column B of Table 7. Except parameter space. For example, reactions 7 and 8
the value of XH2o at the flame sheet, the "ob- are in partial equilibrium if and only if we can
servables" are well reproduced, but the flame increase k7 and k8 arbitrarily, while keeping
speed is further decreased. their ratio fixed at the equilibrium constant. Simi-

We would like to further simplify the model larly, HO 2 is in quasi-steady state if and only if
and to avoid the deviations in the predictions of the rates of reactions consuming it can be arbi-
the flame speed. The eigenvectors corresponding trarily increased, possibly keeping their ratios
to further small eigenvalues are, however, too fixed. Therefore, in order to exploit the sensitiv-
comolex for mechanistic interpretation. Before ity results for model simplification, we look for
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such "invariant" dfrections in the parameter turbations satisfying the equation
space, trying to preserve the value of the flame
speed at the same time. E (au/ap) Apj = 0. (28)

Let Y(x, p) denote the ith observabie." j=1
From the Taylor series expansion the deviation
AY(x, p) = Y(x, p) - Y(x, p*) is given by Taking into account this constraint, we still have

a six-dimensional subspace of the parameter space

r to explore, and hence there exist infinitely many
AYi(x, p) = a Z i(X, p*) (pi - poi) "invariant" directions. To find such vectors we

j= apj consider parameter perturbations and find their
projections onto the invariant subspace by least

% + O(JApJJ2), (27) squares method, subject to the flame speed con-
straint.

The first result following from this approach is
where a( 1 A p 112 ) denotes the higher-order terms. that A P 17 is orthogonal to the invariant subspace.
Due to self-similarity, there exist constants Qj = and hence it is not possible to change the value of
c/c,, j = 2,.. . , r, such that a Yi(x, p*)/pij - A .7 without introducing large deviations in the
j a Y(x, p)/ap . Therefore, we can select vec- observations. Therefore, in spite of its relatively

tors Ap = p - p* in infinitely many different small sensitivity coefficient, step 17 plays an im-
ways to make the sum in Eq. 27 vanishingly portant role also in flame modeling. This immedi-
small. Calculations show, however, that by the ately explains the large deviations in column C of
presence of higher-order terms u(llApI2) this Table 7.
consideration does not enable us to find invariant We look for parameter perturbations that can
directions in the parameter space. For example, be given some mechanistic interpretations in terms
selecting A 37 = 10A37, A38 = A8, and of simplifying assumptions. First, we try to in-
A,17 = 5.272 A*,7, by self-similarity we have crease A.7 and A8 in order to confirm the partial
(aYia/A,7)(A7 - A017) + (8Y/8A 38)(A 38 - equilibrium assumption, as well as to increaseA 3) + (a/Yi/aA)(A17 - A7) - 0 for all i A1 9, A , and A3s, thereby moving H02 toward

and x, i.e., the effect of changing A37 and A 3 8  its steady-state values. The selected parameters in
can be compensated by multiplying also A,.7 by a the invariant subspace and the resulting devia-
suitable factor. These relatively small perturba- tions are shown in column D of Table 7. It
tions of the parameters give, however, large devi- follows that subject to the constraint on the flame
ations not only in the flame speed, but also in the speed we cannot multiply A 7 and A8 by the
values of the "observables," as shown in Col- same factor, and hence the partial equilibrium
umn C of Table 7. These deviations are caused assumption does not globally apply. This agrees
clearly by the higher-order terms in Eq. 27. with the result of Dixon-Lewis [211, who empha-

We emphasize that principal component analy- sized that such assumptions are valid only in the
sis approximates also the second-order sensitivity recombination region. We show, however, that
functions while requiring only the first-order ones the QSSA on 0, OH and H02 radicals is a
(see Ref. 25) and hence may perform better. reasonable global assumption. According to col-
According to Table 6 we have seven small eigen- umn E of Table 7, increasing also the values of
values, and any parameter perturbation Ap con- A5 and A 6, the deviations are almost unchanged,
fined to the seven-dimensional subspace spanned except the one for XHo at the flame sheet.
by the corresponding eigenvectors is expected to Columns F and G show the results of further
lead to small changes in the "observables," at increasing the parameters. Notice that the rates of
least when 11Apll is not too large. In addition, reaction 3, 4, 15, 16, 21, and 38 are becoming
we want to keep the flame speed u unchanged, very small at the same time, since their effects are
and hence restrict consideration to parameter per- compensated by increasing the values of A,.
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A 6 , A7, As, and A 9. According to columns F by diffusion. The rate-determining step is I. The
and G of Table 7, the deviations are almost 0 radical then quickly reacts in the chain-
unchanged under very large parameter perturba- branching reaction 7, producing OH" radicals.
tions in the last step. With this additional source of OH', step I will no

The reason behind these paramet-r changes more constrain the rate of reaction 5, and the
will be clear looking at the resulting mechanism formal reaction
of the nine reactions 1, 2, 5, 6, 7, 8, 17, 19, and 2 × (5) + (7)"O0+ 21-f,-p H,0 + 211
37. Because we increased A 5 , A 6 , A 7 , and A 8
by several orders of magnitude, the radicals OH' is responsible for the fast increase in the concen-
and 0* produced in step 1 quickly react in steps 5 tration of the radical pool, and for the fast accu-
and 7, respectively. Therefore, the OH* and 0 mulation of the product H20. Since zAH 5 = - 15
concentrations are small, and the QSSA certainly kcal/mol and AH 7 = 16.9 kcal/mol, the se-
applies. Similhrly, HO, produced in step 17 quence 2 x (5) + (7) is exothermic.
quickly recombines in step 19, thereby supporting The further reactions of the nine-step reduced
the QSSA also for HO 2. model form the recombination sequences

Because the validity of quasi-steady-state as-
sumptions is clear for the model with some of the (17) + (19): 2H-+ 0, + M - H, + 0 2 + M
rates highly increased, and the increase of these
rates gives small deviations in the flame speed and
and the temperature, the same assumptions apply (37) + (19) : OH '+ O+ H + M
to the original model. We admit that this reason- H2 + 02 + M,
ing is somewhat indirect. In fact, for kinetic
models without diffusion the principal component where (17) + (19) is important only in the low-
analysis often reveals the simplifying assumptions temperature region.
unambiguously [25, 261. In the flame problem, The simple model also facilitates the derivation,
however, the reactions are so strongly coupled of global reaction rates. The quasi-steady-state;
that we have an entire invariant subspace instead conditions on 0, OH*, and H0 2, respectively,
of some well defined and easily interpretable are given by
invariant directions. Therefore, we actually had
to move in the parameter space to find such r, - r 2 - r 7 + r8 - r 37 = 0,
interpretable directions. This emphasizes that the r, - r, - r5 + r6 + 2 r 7 - 2r 8 - r 37 = 0,
perturbations selected are not at all unique, and
the model in flame calculations can be simplified r,7 + r 37 - r,9 = 0, (29)

in many different ways. For example, steps 3, 4, where r i denotes the rate of the ith reaction.
15, 16, and 21 are influential at nominal parame- Then the production rates of the further species
ters values, and we could drop them only by are
increasing the rates of some other reactions. With
these arbitrary rates, the reactions 1, 2, 5, 6, 7, W n  2R, - 2R 2 ,

8, 17, 19, and 37 do not form a valid mechanism. WH, = -3R, + R 2 ,
Nevertheless, this simplification is advantageous
for several reasons. First, it is easy to see how W 0 2 = -R 1 ,
the combustion proceeds in the flame. Adding ( H,o = 2R1, (30)
steps I and 5 gives the formal equation

where R, and R, are the global reaction rates
(1) + (5): H 2 + 02 - H20 + 0. defined by

Thus these two steps play the role of the initiation RI = r7 - r 8  7 r6) = - r2  3
reaction in the presence of H' radicals, supplied (31)
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and -3k[H,ov + 3k 8u 2 + k,[H 2]u

R 2 = r,7 + r3, = r,9 . (32) = k 6[H 20] [H], (36)

It follows from the stoichiometry in Eq. 30 that
the global reactions are and

02 + 3H 2 - 2H 20 + 21' (33) k,9[H] z = k17[H'] [021 [M] + k 37 uv[Ml

and (37)

2H - H2 , (34) Equations 35 and 36 enable us to find the steady-
state radical concentrations u and v, and then z

with rate expressions 31 and 32, respectively, is given by Eq. 37. Unfortunately, in spite of the
Introduce% the notations u = [OH']QSS, V highly simplified model, Eqs. 35 and 36 give rise

[O']QSs, and z = [HO2]Q s . Rearranging Eqs. to the cubic equation
29 gives the quasi-steady-state conditions

k7[H20] v - k8u2 + (k37[M] + k2)uv u3 + au 2 + bu + c = 0, (38)

=k1[02 1 [H ] , (35) where

1 k5

b (k5 k7[H2 ] - k6 (k37[M] + k2)[H1)[H 20] (39)
3k 8(k 37[M ] + k-)

Ck7[H2OI [H'] (3k, [021 + k6 [H 2 0])
- 3k 8 (k 37 [M] + k 2)

Although Eq. 38 can be solved analytically by the and hence 3(k 37[M] + k2)v k5[H21. Then by
Cardand formula, it does not give a really simple Eq. 40 the global rate expressions .are given by
expression for the global reaction rates. Notice
thatEq. 38 may have three different real solutions Ri = k,[H'][021, R 2 = k, 7 IH1[0 21. (41)
and hence the possibility of flame multiplicity
[48] is not excluded in certain concentration re- Thus in these regions the most important process
gions, but we do not further study this problem is the competition of steps 1 and 17, similarly to
here. the diffusion-free situation. The recombination

Because there are no terms in Eqs. 35 and 36 reactions are, however, important at latter stages
much smaller than the others, no further simpli- of the process.
fication of the rate expressions is possible for the Although the QSSA on HO*, 0', and HO,
entire combustion process. From Eqs. 35 and 36 applies also to lean and rich H2-air flames, tc
we have derive this result from the sensitivity coefficients

we had to construct sequences of models, con-
3(k4[M] + k2 )uv + k5~nH~ Uverging to the quasi-steady-state one, that differ

= (3k,[0 21 + k6[H20)[H J. (40) from the ones reported in Table 7 for the stoi-
chiometric flame. Because the conditions 35-37

In the preflame region and in the flame sheet we involve the corrupted rate constants of the 9-step
may assume that the recombination is negligible, model derived for the stoichiometric flame, to
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obtain a more generall valid quasi- steady-state ity functions it was shown that the indirect effects
model one has to consider the 15-step mechanism through thermal feedback are responsible for 70%
in Table 4 as the starting point, thereby obtaining of the concentration changes brought about by
more complex QSSA conditions. parameter variations. The direct, quasi-isother-

We admit that some results of this section are mal effects are, however, not negligible, and this
negative. First, the global rate equations obtained is a possible explanation of the complexity of the
by QSSA on the radicals 0, OH *, and HO2 do diffusion-free process.
not have a really simple analytic form. Second, Diffusion has also been considered in the third
because we have too much freedom in simplify- set of calculations, modeling steady premixed
ing the model, principal component analysis does flames. Simultaneous effects of thermal and trans-
not directly reveal how to actually perform the port phenomena are shown to change the sensitiv-
simplification and hence it does not offer a practi- ity functions dramatically and to lead to their
cal method. Third, it follows from Table 7 that self-similarity. In particular, in the presence of
the simplified model, while predicting the tem- thermal and molecular diffusion the indirect ef-
perature and the flame speed, leads to significant fects of the heat release are responsible for at
deviations in the mass fraction profiles. We have least 90% of concentration changes brought about
shown, however, that the combustion mecha- by parameter variations. This has been shown by
nism, very complex in a diffusion-free system, is repeating sensitivity calculations with a con-
rendered much simpler by the presence of diffu- strained flame temperature profile. The main con-
sion. sequence is that the concentration of any species

is sensitive to the rate constant of a particular

CONCLUSIONS reaction if and only if this reaction has a large
temperature sensitivity coefficient. This fact en-

Although the primary goal of this work is to ables us to reduce the original mechanism to a set
study the influence of heat release and diffusion of 15 reactions, thereby introducing less than 5%,
on the relative significance of elementary reac- changes in the concentration and temperature pro-.
tions in the mechanism of H2 oxidation, results files.
help us to understand why highly simplified mod- By virtue of self-similarity of sensitivity func-
els can be used in premixed steady flame calcula- tions, the elementary reactions in the flame model
tions in spite of an inherently complex reaction are not kinetically independent, i.e., the effect of
mechanism. The complexity of the mechanism of changing the rate constant of one reaction can be
H2 oxidation has been shown by performing first well compensated by changing the rates of other
isothermal, diffusion-free calculations. Sensitivity reactions. Parameter perturbations can be associ-
and principal component analysis reveals that most ated with simplifying kinetic assumptions. For
reactions of our 38-step starting mechanism are example, the ability of increasing the rates of a
influential, and no simplifying kinetic assump- forward/backward reaction pair while keeping
tions such as quasi-steady-state on some of radi- their ratio fixed and thereby introducing only
cals apply under these conditions. The influence small changes in the solution of the flame model
of thermal effects only has been studied by mod- indicates that partial equilibrium of this reaction
eling adiabatic, diffusion-free combustion. Al- is a valid assumption. These considerations show
though he feedback through heat release in- that one has much freedom in simplifying the
creases the magnitude of sensitivity functions kinetic' model in flame calculations. In particular,
considerably, the conclusions are similar to the any parameter perturbation confined to a 6-di-
isothermal case. Sensitivity functions have also mensional subspace of the 15-dimensional param-
been computed at constrained adiabatic tempera- eter space of the reduced mechanism gives rela-
ture profile, i.e., considering the temperature as tively small changes in the flame speed and tem-
an external variable, independent of parameter perature profile. Although the model can be sim-
perturbations. Comparing the two sets of sensitiv- plified in many different ways, we constructed a
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Abstract - We study the relations between thermal runaway (also called paramet-

ric sensitivity) and self-similarity, an interesting property of the sensitivity functions

that has been numerically verified in many explosion and combustion systems. Both

concepts are sensitivity-related but independent of the particular parameter being per-

turbed. This independence is emphasized by proposing a new generalized condition

for parametric sensitivity. Criticality is defined as the point in the parameter space

where the nominal trajectory exhibits maximum sensitivity to arbitrary, unstructured

perturbations applied at the maximum temperature. The condition for criticality re-

duces to the analysis of the eigenvalues of the jacobian matrix. In addition to its

conceptual generality, the new condition shows that in certain cases there exists no

critical Semenov number. The sensitivity functions are shown to satisfy self-similarity

relations if and only if the system exhibits critical or supercritical behavior. The onset

of self-similarity is explained in terms of two properties of explosion systems, both re-

lated to parametric sensitivity. First, the temperature is a dominant variable, and any

perturbation in the system affects the conversion mainly through the changes induced

in the temperature. This strong coupling of the variables is shown by decomposing the

sensitivity functions into direct and indirect terms. Second, the sensitivity equations

are pseudohomogeneous in a characteristic time window, in which the system becomes

relatively insensitive to parameter perturbations applied within the same interval. The

two properties are shown to imply self-similarity of the sensitivity functions. Relations

to earlier parametric sensitivity and self-similarity conditions are discussed.



1. INTRODUCTION

This paper is a simultaneous stady of two apps-ently unrelated phenomena. The I
first is parametric sensitivity or thermal runaway (Mo:bidelli and Varma; 1988), the

second is the self-similarity relation among parameter sent.tivity functions, observed

in many dynamical systems (Rabitz and Smooke; 1988). We w,11 show that the two

concepts are related and the analysis of such relations leads to considerable new insight.

Althiugh both parametric sensitivity and self-similarity are important in a variety

of contexts, we restrict consideration to the simple case of a homogeneous system in

which an exothrmic, .. ,v.le nth order cecoIon oc,.urs. As shown by Boddington

et al. (1983), such a system can be describe4 by the following dimensionlesF mass and

heat balance equations:
dz _~

d-= -(1 - z)"h¢9 (1)

dO
= 0(1 - z)"h(O) - 0 (2)

where the reaction rate is defined by

0
h(9) = exp( ), 3)

and the initial conditions at r = 0 are

z(0) = z° = 0, 8() = 0 = 0. (4)

All symbols in (l)-(4) are explained in the text a in the Notations.

Parametric sensitivity is concerned with the dependence of system behavior or

heat release and heat ioss parameters. The problem is very simple if reactant con-

sumption is neglected, i.e., we drop eq. (1) and set z(t) = 0 in (2)-(4). Depending on

the value of the Semenov parameter 0, the tempe:ature then either rises to a maxi- 3
mum and subsequently falls back to the ambient (subcritiral behavior), or it "ncreases

1
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monotonically and becomes unbounded in finite time (supercritical behavior). The

system is stable in the first case and is unstable in the second. The clear distinction

between subcritical and supercritical trajectories disappears when ieactant consump-

tion i Laken into account, because after attaining its maximum 0* the temperature

alwais returns to the ambient, which is the unique and stable steady state. Nev-

ertheless, there is a characteristic value of th! Seme- ov parameter at which the

trajectories become very sensitive to variations in parameters and initial rconditions.

This concept of runaway, also called parametric sensitivity, has been introduced by

Bilous and Amundson (L956) La the context of chemical reactor theory. They calcu-

lated the sensitivity of the temperature with respect to several input variables along

the trajectory corresponding to nominal operating conditions. The system was said

to exhibit parametric sensitivity if these sensitivity functioas increased to very large

values.

In order to eliminate the unspecified threeshold on the sensitivities, Thomas and

Bowes (1961) and Adler and Enig (1964) proposed criteria for parametric sensitivity

based on the occurrence of a positive second-order derivative before the maximum, in

the temperature-time and temperature-conversion planes, respectivel; These defini-

tions do not require the use of arbitrary threeshold values, but their relationslup 4o the

original formulation of Bilous of Amundson (1956) is not straightforward. The sensi-

tivity concept was reintroduced by Boddington et al (1983) into the runaway theory.

In their formulation the sensitivity of the maximum temperature 0* with respect to

the Senmenov number 1b takes its maximum at the critical value o of 0b. This condition

was generalized by Morbidelli and Varma (1988) who noticed that to define the critical

Semenov number Ob one car use the derivative of 0" with respect to any parameter

pi instead of 190*/aO, since all sensitivities as functions of ik have their maxima at

the same point. The generalized criterion is firmly based on sensitivity concepts and

emphasizes that at criticality the maximum temperature 6* becomes simultaneously

2



sensitive to small changes in any of the model parameters. The criterion, originally

proposed for the explosion model (1)-(4), has been extended to further systems (Mor- I
bidelli and Varma; 1989).

For a general treatment of scaling and self-similarity it is convenient to consider

a model of the form

= f(y,p), y(O) = Yo, (5) 1
where y = (y1,y2,. . . ,yn) T and p = (pI,p2,... ,pq)T denote the variables and pa-

rameters of the model, respectively. Rabitz and Smooke (1988) observed that the

derivatives Oyi/Opj and 8y/Ot frequently satisfy the scaling relations of the form I
iayi/i9 (9yi/at8 yi/0 Pk (6)

for all t. Relations (6) immediately imply that 3
______ ay/aP A (7)

ai aPJ Oyj/ap,'

thus the ratio of sensitivity functions with respect to parameters Pk and pi is the same

for any variable of the model. The self-similarity relations formulated by Rabitz and

Smooke (1988) go a step further and show that these ratios are of the form

_y_/_pk k (8)ayi/ap, at ')

for all t, where 0rk and 0l are constant coefficients. Equation (8) states that the

sensitivity functions of a given variable, with respect to a sequence of parameters, will

be described by a self-similar set of curves as functions of time, all related by the

constants in the vector o = (ul, 0'2,..., 0q). Scaling and self-similarity relations have

been verified also in steady-state problems such as in steady premixed laminar flames

(Vajda et al.; 1990).

Two observations suggest that there exist relations between thermal runaway and

self-similarity. First, the sensitivity coefficients 48*/Opi of Lhe temperature maximum

3
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0* with respect to various parameters pj not only have their extrema at the same

I value 0c, but are also similar as functions of the Semenov number & (see Figures 4

and 7 in Morbidelli and Varma; 1988). Second, as we show further in this paper, the

sensitivity functions of the model (1)-(4) satisfy the self-similarity relations if and only

I if the system exhibits critical or supercritical behavior. A further motivation for a

joint analysis of the two phenomena is that both seem to be somewhat beyond the

scope of usual sensitivity studies. In fact, the main goal of sensitivity analysis is to

quantify the influence of individual parameters on system behavior. Thermal runaway

I and self-similarity are, howevei, phenomena that apa.. .. m co-astant scalin6 L'ctors

do not depend on the choice of the particular parameter being perturbed.

As shown by Rabitz and Smooke (1988), both scaling and self-similarity conditions

for system (5) can be derived by assuming the existence of a dominant independent

variable y,, and appropriate functions F1 ,... ,F- 1 such that all the other variables

yl,... , Yn-1 can be expressed as

I y(t, p) = Fi(Yn(t,p)), i = 1,...,n- 1. (9)

Notice that the functions F explicitly depend neither on time nor on the parameters.

The explosion system (1)-(4), however, satisfies self-similarity relations (8), whereas

I no scaling relations of form (6) were observed. In the present paper self-similarity

is derived without assuming (9). Nevertheless, the temperature is shown to be the

dominant variable under critical or supercritical conditions. Furthermore, we identify

3 a relationship that can be regarded as a generalization of (9).

2. A NEW GENERALIZED CONDITION

FOR PARAMETRIC SENSITIVITY

I This section relies on the results of Morbidelli and Varma (1988) who showed that

the critical value 0. of the Semenov parameter satisfies the relations 809*(;,)/OpjI >
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180*()/apil for all 0, where pi can be any of the parameters in eqs. (1)-(4). The

equations will be written in the form

dz _1

di = ( ) - )"(T) (10)

T e(1 -1

where the temperature dependence of reaction rate constant is given by

O(T) = exp( T ), (12)

and t = tr. The initial conditions are 
I

z(0) = zo = 0, T(0) = To = 1. (13)

Eq. (12) explicitly shows the role of the activation energy parameter e. The model I
now has four parameters 04, B, e, and n. Similarly to Morbidelli and Varma (1988) we

consider only n = 1 in the calculations. For simplicity the vector notation y = (z, T)T

will also be used, thereby reducing (10)-(11) to the general form (5). 3
Using either sensitivity or stability concepts in the analysis of thermal runaway

it is natural to study the behavior of system (10)-(13) in the vicinity of the nominal

trajectory y(t), i.e., of the trajectory that corresponds to nominal parameters. A

simple approach to this local analysis involves the linear perturbation equation

d 6y = A(y)6y, 6y(0) = 6y0 , (14)

where the elements ai3 = 8F/Oy of the Jacobian matrix A are given by 3
-- -,(1 - z)n - 4(T) (15a)

a~ll n(1a

a12 1 (1 - z)" '(T) (15b) 3
a21 = -en(1 -- z)n-I O(T) (15c)

5
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nda22 f (T) - (15d)

= (T) -S(T) (15e)
OTndT

Consider first a two-dimensional linear dynamical system of the form (14) but

with a constant coefficient matrix A. Based on the text by Hirsch and Smale (1974),

Figure 1 summarizes the geometric information on the form of behavior that can be

deduced from the characteristic equation

IX 2 - (trA)A + deiA = 0. (16)

The regions corresponding to different forms of behavior are divided by the parabole

A = 0, where A = (trA)2 - 4detA is the discriminant of the quadratic equation

(16). Regions I through IV correspond to stable nodes, stable spirals, unstable spirals,

and unstable nodes, respectively. The region with det A < 0, not shown in Figure 1,

corresponds to saddle behavior.

Since the coefficient matrix in (14) is not constant, the characteristic of the lo-

cal linearization changes as the point y(t) moves along the nominal trajectory. The

determinant of A is given by

I detA(y) = -( - z)n-10(T). (17)

Since 0 < z < 1, det A > 0 for all t, and the linear approximation (14) never exhibits

3 saddle-type behavior. Furthermore,

trA(y) = (1 - z)"-j)(T)( I z -n (18)T2 B)  e"

3 If the initial conditions are z0 = 0 and T O = 1, then at t = 0

trA(y0 ) = 1 _ n-1 det A(y0 ) = n (19)
B p , ~ Beb
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whereas at t -- oo we have y' = (1, 1)T, and

trA(y') = 1 detA(y') - 0. (20) 1
Thus, at t = 0 the local behavior of the system is a sink if 0 _ B/[e(B - n)], and it

always becomes a sink when t - oo. In these regions a local perturbation exponentially

decays to the nominal trajectory, and no thermal runaway is possible unless the system

locally behaves as a source on some time interval. Indeed, apart from very small values

of the Semenov number, we have trA > 0 along some segments of the trajectory.

Trajectories corresponding to n = 1, B = 50, c = 0.1, and three different values of '0

are shown in Figure 1. Each point in this plane describes the geometric character ,f

the perturbation equation (14) around the point y(i). This character changes as y(t)

moves along the nominal trajectory, and according to Figure 1 it goes through the

following stages: stable node, stable spiral, unstable spiral, unstable node, and then

backward all the way to the stable node.

The geometric definition of thermal runaway due to Adler and Enig (1964) and

both sensitivity-based definitions by Boddington et al. (1983) Pnd by Morbidelli and

Varma (1988) consider the behavior near or at the tempei ure maximum T*. There-

fore we also consider the point y(t*), where V denotes the time of the temperature

maximum. Instead of looking for a positive second-order derivative before V (Adler 1
and Enig, 1964) or for the maximum of the sensitivity BT*/pj as a function of 4'

(Morbidelli and Varma, 1988), we ask how a perturbation 6y(t*) applied at time V

will propagate when t > V. There are two forms of this behavior. The equilibrium

point Sy = 0 of the perturbation equations (14) is either stable and then the system 3
returns to the nominal trajectory, oi: the linear approximation is unstable and then

the perturbation by(t*) is amplified on some interval [t*, t]. It is reason able to identify

I
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criticality with the conditions leading to the maximum of such amplification. Consider

a small time step bt = t - V*, then the solution of (14) is approximated by

6y(t) = ezp[A(y*)6t]by(t*). (21)

By the definition of the matrix norm

max 114(011 = ezp[Re(Amo46i], (22)jI y(i*)J

where lly()ll denotes the Euclidean norm of the vector y(t), and Re(Am,,) is the

largest real part of the two eigenvalues of A(y) at t = V.

We define criticality as the point in the parameter space at which Re(,maz) takes

its maximum, provided this maximum is nonnegative. Therefore, criticality implies

maximum sensitivity of the nominal trajectory to perturbations applied at time V.

If Re(,maz) < 0, then by (21) all perturbations decay and no runaway is possible.

If we consider one of the model parameters, say the Semenov number 0, and keep

all the others fixed, then the critical value Oc is that value of 0 which maximizes

Re(Amz) at y(t'). As shown in Figure 2 for e = 0.1, keeping the other parameters

fixed Re(AmnZ) exhibits a maximum at a specific value of 0 which is then defined as

the critical Semenov number .

In Table 1 we compare the critical value '4c given by our definition with the values

derived by Adler and Enig (1964) and Morbidelli and Varma (1988). Notice that the

latter condition is based on the use of the sensitivity coefficients 0T*/Opj, where pj

is one of the model parameters, and the value of -c may depend on the choice of

pj. Therefore Table 1 lists the smallest and largest walues found in this way. For

each value of B we also show the temperature maximum T*, the discriminant A and

the value of Re(A,,n.z) at T*. For B > 30 the agreement with the previous criteria

is very good. For smaller B's the values predicted by the three criteria start to

deviate, with our criterion resulting in the lowest estimates of Oc. According to Table

8



2 similar cornclusions hold for e = 0. Notice that in Table 2 we list the values of the

maximum dimensionless temperature 0* used in eqs. (1)-(4) instead of the maximum m

temperature T*. This renders our results directly comparable to those of Morbidelli

and Varma (1988).

Since the new condition is based on local linearization and eigenvalue analysis,

it is related to the work of Gray and Sherrington (1972a, 1972b) who derived critical I
values for the Semenov number on the base of Liapunov's stability theorems. Gray and

Sherrington (1972b) noticed that, compared to their criticality condition, the method

of Adler and Enig (1964) always overestimates the stable region. This overestimation is

seen experimentally since the predicted stable temperatures are higher than observed

in practice. According to Tables 1 and 2 our criterion also gives lower critical values

than predicted by Adler and Enig (1964).

For small B's the previous criteria not only overpredict the stable region but m

the predictions become rather unreliable. This is not surprising since with decreasing

values of B and e-1 the magnitude of the temperature maximum itself becomes rather

small, and the system gradually loses its sensitivity potential. While this non-explosive 3
region is physically not very interesting, our criterion shows that for certain regions of

the parameters n, B , and e we have Re(Anm ) < 0 for all values of0, and there exists

no critical Semenov number. None of the previous criteria can give such a clear result. I
As noticed by Morbideli and Varma (1988), all criteria based on the topology of the

temperature-conversion or temperature-time profiles a priori assume the existence of

a critical point at any value of B. This criticism is valid, but the situation is not much

better with the criterion of Morbidelli and Varma (1988). In fact, the only sign that 3
indicates the uncertainty in the value of oc, or possibly the nonexistence of runaway,

is the deviation among predictions based on the choice of different parameters pi in

the generalized condition. According to our criterion (Table 1), for B=7 the local

linearization is assimptotically stable for any value of 0, and any perturbation of the

9
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nominal trajectory applied at time t* decays to zero. Thus, there exists no runaway

at these parameters. Similarly, there is no runaway at e = 0 if B < 5. As shown in

Figure 3, decreasing the value of B at any fixed e we reach a lower bound BI such

that no critical Semenov number exists for B < B1. This explains why predictions by

other methods can deviate from each other even by orders of magnitude in this region

of the parameters.

We conclude this section with some remarks on the form of trajectories in the plane

defined by the coordinates trA and detA as shown in Figure 1. By (17) for n = 1 we

have detA = q(T)/BOb. Since 0 defined by (12) is a monotonically ncreasing function

of T, for n = 1 the maximum of each curve in Figure 1 (i.e., the maximum of det A) is

at the temperature maximum T*. Using our generalized criterion we increase ik while

keeping the other parameters fixed and observe when Re(AmGZ) reaches its maximum.

As shown in Figure 1, this maximum first moves to the right with increasing 7k, then

moves to the left when 0 passes the critical value 0,. If the maximum is in region

III, then Re(Amaz) = trA/2, and thus it can be identified with the utmost right

position of the maximum. In region IV Re(Amaz) = (trA + v/-A)/2, and the geometric

interpretation is not so simple. On the boundary of the two regions A = 0 and the

Jacobian mz potr A nf 4d.*+-l , :nenvalues. According to Tables 1 and 2,

3 A has small negative values at criticality in most cases. The maximum of the curve is

then in region III close to the boundary, and at criticality the system behaves as an

unstable spiral with small immaginary components in the eigenvalues. This behavior,

however, suddenly changes at sufficiently high values of the heat of reaction parameter

B. For example, with e = 0 and n = 1 such a change occures at B > 26. Then

the discriminant A becomes large and positive around the critical point, and thus the

maximum is in region IV. The criticality is very sharp: a slight increase in O will move

the maximum of the curve far to the left into region I.

10



3. EFFECTS OF CRITICAL CONDITIONS ON SELF-SIMILARITY

Figures 4 through 9 demonstrate self-similarity and its relation to criticality for 3
model (10)-(13) by presenting the sensitivity functions with respect to the parameters

PI = '0, P2 = B, and P3 = e calculated at n = 1, B = 30, e = 0.1, and different

values of 0. Figures 4 and 5 were obtained at 0 = 0.55 that generates subcritical

behavior. The sensitivities with respect to B and e are small compared to the ones

with respect to 0, and not much similarity is seen among the three functions. There

is, however, noticeable similarity at the critical value ik = 0.6107 (Figures 6 and 7).

as expected from the definition of parametric sensitivitivity, at ii = Oc the maximum 3
of the function OT/Opj occures at t = t*, the time of temperature maximum (t* = 4.81

for the conditions shown in Figure 6). A slight increase in the value of 0 moves the

system into the supercritical region and alters the form of the temperature sensitivity

function which now changes sign close to t* (W = 4.27 for the conditions of Figure 8).

According to Figures 8 and 9 the similarity of sensitivity function is preserved in the

supercritical region.

By (8) self-similarity assumes the existence of constants aj such that Oyk/ Opj , I
aj(Oyk/ap1) on some time interval for k = 1,2 and j = 2,3. Since these relations are

approximate, we introduce the sum of squares objective functions

Qk(a 2,a) ak(ti) - a9 k(]i)1 2 (23)
j=2 i=1

where y, = z, y2 = T, m is the number of selected time points ti,... , t,, and

0 0(t,) _= ayk(ti)/OPj (24) U
is the normalized sensitivity function with (Oyk/OP,)ma: representing the maximum

sensitivity. We use this particular normalization to give approximately equal weights u
11
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to the two sensitivity functions in (23). Following a least squares estimation of the

factors a 2 and a3, the degree of similarity is measured by the residual sums of squares

Qk=min k(a2,a 3 ), k = 1,2. (25)

Figures 10 and 11 show how Q1 and Q2 depend on the Semenov parameter at B = 30

and B = 50, respectively. The plots were generated at n = 1 and e = 0.1, selecting 50

equidistant points with time steps At = ti+l - ti = 0.2. The residual sum (25) quickly

decreases as 0 approaches its critical value (ikc = 0.6107 and oc = 0.533 in Figures

10 and 11, respectively), and remains almost constant in the supercritical region. A

slight local minimum can be observed close to the point of criticality. In critical and

supercritical regions the residual errors defined by sk = VrQk/(2m - 2) are sk ; 0.045

and .k - 0.01 for B = 30 and B = 50, respectively. This shows high degrees of

similarity in both cases. Notice that similarity improves with increasing values of B

when considering critical or supercritical points.

In this section we will show that self-similarity follows from two properties of

the simple explosion system described by eqs. (10) and (11). The first property is

strong coupling of the conversion variable to the temperature. The second is the

pseudohomogeneous behavior of the corresponding sensitivity equations on an open

neighborhood of i*, the point of maximum temperature. These properties will be

discussed in turn.

3A. STRONG COUPLING APPROXIMATION

For notational simplicity we write equations (10) and (11) in the general form as

dzdz f(z,T,p) (26a)

dT
- - f 2 (zT,p). (26b)
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Differentiating (26) with respect to the parameter pi one obtains the sensitivity equa-

tions d Oz Of, Oz Of, OT Of, (27a)

z j p, + &T opj +(27pa

d oT Of2 8z Of 2 O +f2d- p--S= aopt+ aTop "(27b)
di pj O z5pj 8T Op, Tp,_

To study the coupling of the two variables we decouple them by assuming that OT/Opi I
is a known function and considering the first equation (27a) separately. This equation

can be solved through the Green's function g(t, t') which is the solution of the time-

variable linear different,.' -TVan:on

d Oi,

where 6(t - t') denotes the Dirac impulse function, and the initial conditions are given

by gi(t',t') = 1, and g,(t,t') = 0 for t < t. The solution of (28) is given by

g1(t,t') = ep j (')d, (29)

and in terms of g, (t, t') the conversion sensitivity functions are I
Oz t , Of, OT , + t , Of, c t' ( 0

Let us now decouple the variables by fixing the temperature at its nominal profile, 3
i. e., considering T(t) as an external variable, independent of the system parameters.

This is equivalent to the condition 8T/Opj = 0 for all t, and the conversion sensitivity

function is reduced to the second term in eq. (30). This term, defined as

9Z(t)]T = t 91(t,t')O(t')dt' (31)n

is called the constrained temperature sensitivity function of the conversion. It is the

sensitivity function corresponding to a process in which the temperature of the reaction I
vessel is controlled to exactly follow a prescribed profile in spite of the perturbations
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in the system parameters. Equation (30) is a decomposition of the sensitivity function

where the constrained temperature sensitivity term (31) measures the direct effects

of parameter perturbations on the conversion, whereas the first term corresponds to

the indirect effects ( i. e., the parameter perturbations that change the temperature

which, in turn, affects the conversion by altering the reaction rate).

Figure 12 shows the constrained temperature sensitivity functions of the conver-

sion at n = 1, B = 30, e = 0.1, and the critical value 4bc = 0.6107 of the Semenov

number. We compare these functions to the original conversion sensitivity coefficients

shown in Figure 7. While all AL._ i are small at the beginning and also for large

values of t (beyond the interval shown in the Figures), there exists a characteristic

window [tI, t2] on which the first term in (30) is much larger than the second. The

values of ti and t 2 are not unique. For example, selecting any tj > 4.5 and t2 < 10

on [t1 , t2 ] each sensitivity coefficient in Figure 7 is at least five times larger than the

corresponding constrained sensitivity in Figure 12. Retaining only the dominant term

in (30) leads to the approximation

Jo f t t' 8 i 8T (32)

for t < t 5 t 2. We refer to (32) as the strong coupling approximation, since it is based

on the strong coupling of the conversion variable to the temperature which implies that

on [tI, t2] any parameter perturbation dominantly affects the conversion through the

induced perturbation in the temperature of the reaction vessel.

Aproximation (32) helps to understand how conversion and temperature sensi-

tivity functions are related to each other. Due to (15b) 8fi /OT = a12 > 0 for all t,

nd by (29) g1(t,t') > 0 for all t and t'. Thus the sign of the integrand in '32) is

determined by the sign of OT/8pj. As shown in Figure 6, for 0 = 0.6107 the functions

OT/Opi change sign around t = 6. and then remain small. Accordingly, the conversion

sensitivities in Figure 7 slowly decrease when t > 6. For ' = 0.63 there is a sign
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change in the temperature sensitivities at t - 4.25, but their magnitudes beer me large

again (Figure 8). This explains why the conversion sensitivities shown on Figure 9

and approximated by the integral (32) quickly decrease w' -n t > 4.25.

The strong coupling approximation is clearly related to self-similarity, although

does not comj'letely explain it. In particular, due to (32) the self-similarity of the

temperature sensitivity functions T/Opi, j = 1, 2,3, implieb the self-similarity of the

conversion sensitivity functions Oz/Dpi j = 1,2,3. To sho ' this relationship as time

that 9T/pj and 8T/8pi are self-similar over the interval [t2,t 2], i. e., there exists a

constant ai such that 9T(t)/pj ; ajtT(t)/0p ,. all .1 < t < t2 . It immediately 3
follows from the linearity of the integral operator in (32) that 8z(t)/Opj ; ajOz(t)/Op,

for t1  t <5t 2.

The validity of (32), in turn, is related to parametric sensitivity. As discussed

in Section 2, Morbidelli and Varma (1988) showed that the sensitivity coefficients

8'T*/4pj as functions of , have very sharp zr'.xima at the critical Semo-nov number b,.

When the Semenov iumber approaches its critical value, the first term in (30) becomes

more and more dominant. Therefore, if there exist any pari meter value such that the 3
strong coupling approximation (32) applies to a model, then it certainly applies close

to the point of criticality. Although in the supercritical region the maximum of 8T/Opi

preceeds t, according to our calculations the . -st term in (30) remains dominant on 3
an interval [tl,t 2].

Similarly to the constrained temperature sensitivities of the co.version we can we

calculate the constrained conversion sensitivities of the temperature. In terms of the

Green's function U
g2(t,t') = eXp 10f(rd, (33)

the solution of the temperature sensitivity equation (27b) is given by

8Tt Jj ,~ 11a :ft Uh
09p Wz = api 10aPi
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where the second term

&T = f2 (tto) M(t')d' (35)

is defined as the constrained conversion sensitivity function of the temperature. The

symmetry, however, ends at this point. Comparing FCgures 8 and 13 shows that on

some time interval containing t" the constrained conversion sensitivity functions (35)

of the temperature are even larger than the corresponding full sens;tivity functions

(34). The different behavior of the two variables will be further discussed in the next

section.

3B. PSEUDOHOMOGENEOUS SENSITIVITY EQUATIONS

The sensitivity equations (27) are inhomogeneous due to the terms 8f, /cpi and

8 f2/Opi. It follows, however, from the strong coupling approximation (32) that the

term '9fi/cpj in (27) can be neglected. Operating with (0/8 - af 1 /az) on eq. (32)

and using eq. (28) yields

d Oz 8f Oz Ofi )'(op--t)t 8= + (36)

Comparing (36) to (27a) implies that

0f,(t)/8pi z 0 (37)

for tj < t < t2 .

As discussed, the strong coupling approximation does not apply to the tempera-

ture sensitivity equation. Therefore, it is an independent observation that the direct

term 9f2/ 8 pj is nevertheless small in (27h) over some interval [t1 , t2j. For example, Fig-

ure 14 shows the four terms (af1 IOz)(zl/8,)+(,f/OT)(aT/8I9), (af 2 /8z)(Oz/9ib)+

(8f 2 /T)(8T/84'), afi/81b, and af/O separately at the critical point corresponding
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to B = 30. In this particular case Of, /0b = 0 for all t, but the magnitude of 0f2/1o-

is also relatively small on the interval 3 < t < 6.5. This suggest the approximation

0f 2(t)/pj ; 0 (38)

for tj < t < t 2 . The approximation (38) may seem contradictory with the observation

that (35) is not small, but this argument neglects the behavior of g2 (t,t') as will be

discussed below. Notice that by intuition the derivatives Of 2/Op are also expected to

be relatively small after an induction period. Indeed, an explosion or flame is difficult

to stop once started, thus the process must be rather insensitive to pertur"-tionq siich

as a change in the ambient temperature.

First we show why the strong coupling approximation of the form (32) applies

to the conversion. Evaluating the integral (31) on the subintervals [O,tlj and [ti,t']

separately, i.e., in the form I
t -z (t)]T = t0 g1 (t It') af, ( t ' ) d t ' + t 91(t, e) af, (t')dt", (39)

neglecting the second term due to (37), and rewriting the first term using the relation 3
1 (t,t') = ga(t,tl)g(ti,t') we have:

[ .9Z(t)]T -- 91(t, ti ) tjgi(ta,It') O,(t') dt' = gI (t, t I[ Oz (tl)]r. (40)

By (15a) Of,/Oz < 0 for all t, and by (26) g(t,t') is a quickly decreasing function oft 

for any t > t1 . Since neither (32) nor (37) apply for t < ti, the constrained sensitivity

is not necessarily small on this interval, but wiU quickly diminish for t > t1 , and the

first term in (30) becomes dominant. 3
To prove that the constrained sensitivity function [OT/Opj], can be relatively large

in spite of assumption (38), we now evaluate the integral in (35) on the subintervals

[0,ti] and [t1,t'] separately. Then, similarly to (40), the assumption (38) implies that

[a--- (t)]. 2 (t, tl)[a ti)]-. (41)
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The functions 9 1(t,t') and g2 (t,t') are, however, very different. By (15d) there exists a

time interval such that Of2 1OT > 0, since a positive feedback through the temperature

over some period of time is a trivial necessary condition for explosion. Therefore, while

gj(t, V) quickly diminis es for t > t', by (33) g2 (t,t') increases almost exponentially

on the interval with 8f2 /T > 0. By (41) [0T/apj], also increases during this period

of time following ti, and the constrained sensitivity function can be large in spite of

(38).

Eq. (36) has a further implication. Since f, does not explicitly depend on the

parameters for t1 <t < t 2 , (27a) reduces to

dz (42)T= fi42)T

over the same interval. Let Ttt,t](p) denote the segment of the temperature profile at

parameters p over the time interval [t1 ,i], and consider this function as an input to

(42). Assuming that the conversion z(ti, p) at time t1 is small, the solution of (42) for

some interval t1 + 8 < t < t 2 is of the form

z(i,p) = T[t,t](p)), (43)

where 4, is a functional, and b > 0 is a positive constant such that the term z(ti, p) can

be neglected for t > t4 +6. Since the functional T does explicitly depend neither on time

nor the parameters, (43) is a generalization of the relation (9) with the temperature

as dominant dependent variable. The conversion z at time t depends, however, on an

entire segment T[t,,t] of the temperature profile and not only on the actual temperature

at time t.

3.C. THE ORIGIN OF SELF-SIMILARITY

This subsection shows that the validity of the strong coupling approximation (32)

and the pseudohomogenity assumption (38) together imply self-similarity. Let G(t,t')

18



denote the 2 x 2 Green's function matrix for the equations (10)-(11). Then G(t, t') is

the solution of the matrix differential equation

dG(t,t) = A(t)G(t, t') + 6(t - t')I, (44)

where the elements of A(t) are given by (15) at y(t), and the initial conditions are

G(t', t') = I, and G(t, t') = 0 for t < t'. In terms of G(t, t') the sensitivity functions U
are /zGt)lpj t '( o, t'))lapj dt'. (45)

aT~t)lOpi =fo C M tO) )d.

We evaluate the integral in (45) over the intervals [0,til and [t1 ,t] separately. By

(37) and (38) the integrals on [ti,t] vanish. Exploiting the relationship G(t,t') =

G(t,t )G(tI,t'), eq. (45) is reduced to

Tz(t)Op)= G(),Ii) ) (46)

on the interval tj < t < t2. The first equation of (46) is

Ogz .z + 4Tap- t --- =911(t,ti) -49Z(t1 ) + 912(t, tl)-ap (ti), (47)

where gil and g12 are the two entries in the first row of G. By the strong coupling

approximation (32), if OT/4pj = 0 then this implies Oz/8pj -- 0. This is possible if

and only if the second term in (47) is much larger than the first one, leading to the U
approximation az(t) 912(t,tl f-- (ti). (48)

Since gi(tiii) = 1 and 212(t1,t1) = 0, (48) can be valid only for tj + 6 < t < t2 , 1

where 6 is a positive constant. To calculate the Green's function matrix G(t, tl) we

used the relationship G(t,ti) = G(t,0)G- 1(tj,0), where the last two matrices were

obtained by solving equation (44) with t' = 0. According to these calculations, in

critical and supercritical regions there exist tj and t2 such that the Green's function

19
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912 is similar to Oz/,pi over the interval [ti + 6,t 2]. This result supports the validity

of the assumption (38). Furthermore, 6 can be chosen so small that it will be omitted

in the following. The conversion sensitivity itself turns out to be very small outside

the interval [t,t 2 . However, the validity of (48) does not imply that gil is small

compared to g12. In fact, the two functions can have comparable magnitudes, and it

is the ratio of the sensitivities Oz/8pi and OT/Opi at th that makes the second term

in (47) dominant.

Equation (48) implies self-similarity. Indeed,

8z(t)/ipj OT(tl)/Op,

Oz(t)/8p, OT(tj1)/Op,' (49)

where the right hand side is constant. The choice of t1 is, however, not unique, and

(49) must be valid for any t' > t1 that is sufficiently close to ti. Thus the right hand

side of (49) is the same constant for all t1 < t < t2, and hence both the conversion

and temperature sensitivity function satisfy the self-similarity relations (8).

Some of the relations derived here can be used to explain the origin of scaling

relations (6) if present in the system. Differentiating (26) with respect to time yields

di T .+ Of T (50a)

d = af +- h . (50b)

This is the homogeneous part of eq. (27), and for t > t its solution is given by

(;(t )=GCt,ti) (t() "(51)
'NO ) = T(t)"

The first equation of (51) in a more explicit form is

20



If the second term in (52) dominates, i.e.,

g~t) ;Z: 912(t, tj)T4(t1), (53)

then
'8z(O)/8p, 9T(t)/pi (54)
dz(t)/dt dT(tl)/dt 3

Similarly to (49), the value of tj in (54) is not unique. Therefore, the right hand

side must be the same constant for all t > ti, and the scaling relation of the form

(6) follows. For the explosion system (10)-(11), however, the first term in (52) is

not negligible, and the varibles do not satisfy any scaling relations as it can be readily I
tested by calculations. This result emphasizes that (43) is a generalization of (9), since

assuming a relation of the form (9) implies both scaling and self-similarity (Rabitz and

Smooke, 1988). 3
4. CONCLUSIONS

Both thermal runaway and self-similarity are defined in terms of parameter sen-

sitivity functions but are independent of the choice of particular parameters being I
perturbed. In thermal runaway the critical value of the Semenov number leads to

the maximum of the sensitivity OT*/Opj, where T* is the maximum temparature. As

shown by Morbidelli and Varma (1988), pi generally can be any of the model parame- -
ters. Many dynamical systems also satisfy self-similarity relations, and the sensitivity

functions of each variable with respect to various parameters are identical up to con-

stant scaling factors.

We consider the basic model in thermal explosion theory, i.e., a well-stirred system

in which an exothermic, irreversible reaction occurs, and show that thermal runaway

implies self-similarity. The analysis proceeds in several steps leading to interesting

intermediate results. First, a new generalized condition for thermal runaway is in- -
troduced. As is well known, the concept of thermal runaway is not well defined at
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low values of the heat-of-reaction parameter, and the critical points predicted by Mor-

bidelli and Varma (1988) start to depend on the actual choice of the parameter pj used

in the condition. Here the critical condition is defined as the point in the parameter

space at which the trajectory exhibits maximum sensitivity to arbitrary, unstructured

perturbations applied at the temperature maximum. We show that at this point the

largest real part of the two eigenvalues of the Jacobian matrix reaches its maximum.

If this maximum is negative, then no thermal runaway is possible. None of the known

conditions for parametric sensitivity gives such a clear result. Since it is based on

local linearization and eigenvalue analysis, our condition emphasizes the dual origin of

thermal runaway, rooted both in stability and sensitivity concepts.

Calculations show that the explosion system satisfies self-similarity relations only

under critical and supercritical conditions for thermal runaway. At criticality the tem-

perature becomes the dominant variable, and any perturbation in the parameters af-

fects the conversion by altering the temperature and thereby the reaction rate, whereas

the direct, quasi-isothermic effects of parameter perturbations on the conversion are

negligible. This results in a simple functional dependence between the temperature

and conversion sensitivity functions termed here as the strong coupling approximation.

In addition to the strong coupling, criticality in the explosion system implies that after

an induction period the sensitivity equations are nearly homogeneous, i.e., the direct

effects of parameter perturbations applied at this stage of the reaction are negligibly

small.

Both the strong coupling approximation and the pseudohomogenity of sensitiv-

ity equations follow from critical or supercritical behavior and can be directly tested

by numerical calculations. On the other hand, these two properties together imply

self-similarity. Furthermore, the self-similarity among all sensitivity functions and the

dominant role of the temperature shows that restricting consideration to the tem-

perature in the definition of thermal runaway (Bowes, 1961; Adler and Enig, 1964;
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Boddington et al, 1983; Morbidelli and Varma, 1988) preserves the generality of the

concept. These are the main results of the paper. 3
Since we restrict consideration to a simple system with only two variables, an

important question is whether the results can be generalized to more complex sys-

tems. Based on some preliminary calculations the answer is positive. In particular, we

studied the case of two consecutive reactions in a pseudohomogeneous tubular reactor

(Morbidelli and Varma, 1989). It turns out that one of the eigenvalues of the Jacobian

matrix for this system has a large negative real part all the time along the trajectories

corresponding to nearly critical conditions, whereas the other two eigenvalues exhibit U
exactly the same behavior as described in Section 2. Self-similarity is also observed if

and only if the conditions are critical or supercritical, and the strong coupling approx-

imation applies to both conversion variables. This makes all our results applicable,

but details are beyond the scope of the present paper.

U
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NOTATION

A Jacobian matrix of entries aii defined by (15)

B (-AH)C'ICppf".e,, heat of reaction dimensionless parameter

C reactant concentration, mol m- 3

CP mean specific heat of reactant mixture, J K- 1 kg - 1

det A determinant of matrix A

E activation energy, J mol - '

f right hand side of the vector differential equation (5)

Fi scalar function defined by (9)

G Green's function matrix, solution of eq. (44)

gij entries of the Green's function matrix G

h(8) exp[e/(1 + e8)], temperature dependence of reaction rate constant

k reaction rate constant, mol nr-3 s-1

n reaction order

p parameterization vector in eq. (5)

QAk sum of squares function defined by (23)

R ideal gas constant, J K-' mol - '

Re(A) real part of the eigenvalue A of the Jacobian matrix A at the temperature maxi-

mum T*

S. external surface area per unit volume, m- 1

T 2T/FT., dimensionless temperature

T absolute temperature of reacting mixture, K

2T. absolute ambient temperature, K

f time, s

t ro, dimensionless time

irA trace of the matrix A

U overall heat transfer coefficient, W m - 2 K - 1
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y dependent variables in the differential equations (5)

z (C' - C)/C i , conversion

3 US/Cppk(T)(C')'-', dimensionless heat transfer parameter

A discriminant of the quadratic equation (16)

AH enthalpy of reaction, J mol - 1

6(t) Dirac delta function

6y perturbation of the nominal trajectory

e RTA!E, dimensionless activation energy parameter

0 (T - Ta)/i'c, dimer :vn-.es temperature

Amaz eigenvalue of the Jacobian matrix A with the larger real part

p! fluid mixture density, kg m- 3

oai constant coefficient in eq. (8)

-r tUSV/ Cppf, dimensionless time I
7 B/3, Semenov parameter

O(T) exp[(T - 1)/eT], temperature dependence of reaction rate constant

O critical Semenov number 3
T functional defined by (43)

Subcripts and supercripts

0 initial condition I
- limit at unbounded time

* quantity evaluated at the maximum temperature

2
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Table 1. Values of the critical Semenov number O at e = 0.1

B T* A Re(A,,,.) Predicted values of O,'
(a) (b) (c) (d)

7 1.18 -2.54 -0.165 1.020 1.300 192.000 10.500
10 1.24 -2.99 0.014 0.933 1.030 15.000 1.480
20 1.38 -3.78 0.416 0.709 0.731 0.1 11 u.721
30 1.49 -4.08 0.670 0.611 0.614 0.618 0.607
40 1.47 -1.54 0.830 0.560 0.562 0.562 C.560
50 1.57 -2.31 0.915 0.533 0.533 0.533 0.533

(a) This work.
(b) Lowest estimate by Morbidelli and Varma (1988)
(c) Highest estimate by Morbidelli and Varma (1988)
(d) Estimate of Adler and Enig (1964)



Table 2. Values of the critical Semenov nunilier '~at e =0

B 8' A Re(,\,,,.) Predicted values of 1
(a) (b) (c) (d) d)

5 1.46 -3.40 -0.187 0.970 1.130 2.580 2.380
7 .2 -5.23 O.U60 0.907 1.010 1.220 1.0boj

10 3.01 -9.78 0.560 0.756 0.779 0.794 0.758I
20 3.63 -5.12 1.500 0.545 0.545 0.545 0.545
30 2.53 3.85 2.331 0.490 O.4Ib 0.490 0.490

(a) This work.
(b) Lowest estimate by Morbidelli and Varma (1988)
(c) Highe-t estimate by Morbidelli and Varma (1988)
(d) Estimate of Adler aii- Enig (19f,)



CAPTIONS FOR FIGURES

Figure 1. Geometric characterization of the local behavior of the explosion system in terms

of the trace and the determinant of the Jacobian matrix A. The four regions I,

II, III, and IV correspond to stable nodes, stable spirals, unstable spirals, and

unstable nodes, resp c , -ly. The time step betwen two consecutive points of

the trajectories shown is At = 0.2. The parameter values are B = 50, e = 0.1,

= 0.532 (U, subcritical behavior), b = 0.533 (o, critical point), and l = 0.5332

(+, slightly supercritical behavior).

Figure 2. The larger real part Re(Ameaz) of the two eigenvalues A1 and A2 of the Jacobian

matrix A at the temperature maximum T* as function of the Semenov number

7k at e = 0.1 and three values of B.

Figure 3. Re(Amaz) at the criizal Semenov number 4bc as function of B. While Vbr is defined

for any B and e as the value of -0 at which Re(A,.) attains its maximum, it does

not imply criticality if Re(Amaz) < 0. Thus, for any c there exists no critical

Semenov number below a certain value of B.

Figure 4. Semi-logarithmic sensitivity functions OT/Ologpj of the temperature T at B = 30,

= 0.1, and ' = 0.55 (o ..... behavior).

Figure 5 Sepni-logarithmic sensitivity funct'ns Oz/Ologpj of the conversion z at B = 30,

f = 0.1, and 4' = 0.55 (subcritical behavior).

Figure 0,. Semi-logas:.hmic sensitivity functions OT/O log pi of the temperature T at B = 30,

e= 0.1, and 4 =- 0.53107 (critical point).

Figure 7. Serri-logarithmi- sensitivity functions az/ 8 logpj of tl-e conversion z .t B = 30,

e = 0.1, anc - - 0.6197 (rriticep point).

Figure 8. Semi-logarithmic setmsiti ity functions 0T/o iog p of the temnerature T at B = 30,

= 0.1, and 4 = 0.63 (superc..>ical behavio,).



Figure 9. Semi-logarithmic sensitivity functions z/ 8 logpj of the conversion z at B = 30,

f = 0.1, and 0 = 0.63 (supercritical behavior).

Figure 10. Residual sum of squares defined by (23) - (25), measuring the similarity of the

conversion (Ql)and temperature (Q2) sensitivity functions at E = 0.1 and B = 30.

Figure 11. Residual sum of squares defined by (23) - (25), measuring the similarity of the

conversion (Qj) and temperature (Q2) sensitivity functions at c = 0.1 and B = 50.

Figure 12. Constrained temperature (semi-logarithmic) sensitivity functions of the conver-

sion at f = 0.1, B = 30, and - = 0.6107.

Figure 13. Constrained conversion (semi-logarithmic) sensitivity functions of the tempera-

ture at e = 0.1, B = 30, and lb = 0.6107.

Figure 14. Terms in the sensitivity equation for the parameter ?k at E = 0.1, B = 30,

and V' = 0.6107. Curve 1: (Ofi/Oz)(Oz/4O,) + (af 1 /8T)(OT/O,). Curve 2:

(,f2/8z)(8z/O4,) + (af 2/OT)(OT/aI-b). Curve 3: 9f,/9,. Curve 4: af 2/80.
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Appendix C

3. A Combined Stability-Sensitivity Analysis of Weak and Strong Reactions
of Hydrogen/Oxygen Mi-tures, R. Yetter, H. Rabitz and R. Hedges, Int. J.
Chem. Kinetics, 23, 51 (1991).



A Combfned Stability-Sensitivity Analysis of
Weak and Strong Reactions of

Hydrogen/Oxygen Mixtures

R.A. YETTER
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,

New Jersey 08540

H. RABITZ and R. M. HEDGES
Department of Chemistry, Princeton University, Princeton, New Jersey 08540

Abstract

Stability and sensitivity analysis are used to examine the ignition/reaction characteristics of
dilute hydrogen-oxygen mixtures. The analysis confirms the existence of two distinct regions
of ignition and fast reaction previL" igly labeled "weak" and "strong" ignition, both of which are
located in the explosive pressure-temperature domain and separated by a region related to the
"e.:tended" classical second limit. The stability analysis is based on an eigenanalysis of the
Grten's function matrix of the governing kinetic equations. The magnitudes of the largest (and
system controlling) eigenvalue allow the strengths of the two processes to be quantified, giving
a clear definition to the terms "weak" and "strong." The sensitivities of the largest eigenvalue
to the reaction rate constants of the mechanism pinpoint the elementary steps controlling the
two ignition processes and the subsequent reaction. The associated eigenvectors yield the di-
recLion of change in species concentrations and temperature during the course of reaction.
These vectors are found to be nearly constant during the induction period of both "weak" and
"strong" ignition, thus producing constant overall stoichiometric reactions. The subsequent re-
action of major reactants associated with "weak" ignition also has a constant overall reaction
vector, although, different than that during the induction period. However, the vector describ-
ing the reaction of major reactants associated with "strong" ignition is found never to be con-
stant, but continuously changing beyond the induction period.

Introduction

Advanced flight concepts such as the aerospace plane have renewed inter-
est in air breathing hypersonic combustion. Hydrogen, because of its high
specific energy and high capacity for cooling, is a prime candidate to fuel
these propulsion systems. Because of short residence times in such combus-
tors, fundamental understanding of hydrogen-oxygen ignition and stability
characteristics are essential for proper combustor design and practical im-
plementation of hydrogen as a fuel.

Hydrogen-oxygen kinetics have been observed to exhibit significantly dif-
ferent ignition characteristics depending upon the 'nitial pressure and tem-
perature of an explosive mixture. The differences in behavior, termed
"strong" (or "sharp") ignition and "weak" (or 'mild") ignition, were first
noted by Soloukhin and Strehlow [1] and subsequently studied by others [2-
5]. Voevodsky and Soloukhin [5] explained these differences by a change in

International Journal of Chemical Kinetics, Vol. 23, 251-278 (1991)
© 1991 John Wiley & Sons, Inc. CCC 0538-8066/91/030251-28$04.00
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chemica mec hanism which occurs as a result of the "extended" second limit
of the classical pressure-temperature explosion limits of H2/0 2 mixtures.
Although this work could not accurately predict the experimental trends of
shock induced reactions, the qualitative trends produced from model analy-
sis (based on an inadequate chemical mechanism) were consistent with ex-
periment and implied that the reaction changed from a fully-branched
mechanism ("strong" ignition) to a straight-chain mechanism with rare
branchings ("weak" ignition).

Meyer and Oppenheim [6], using reflected shock wave data, in addition to
Voevodsky and Soloukhin's data, have shown that the separation between
weak and strong ignition, althougi. affccted by the change in chemistry
across the "extended" second limit does not correspond to it, but to a curve
represented by the sensitivity of the induction time to the initial tempera-
ture dri/dl = -2 /b/K. They argued that weak ignition delays are very
sensitive to gas dynamic disturbances, such as perturbations in the temper-
ature field, whereas strong ignition delays were not, thus altering the weak-
strong ignition limit from the "extended" second limit.

More recently, Oran and Boris [7] have examined weak and strong ignition
numerically with a detailed chemical reaction mechanism more representa-
tive of current understanding of H2/02 kinetics than previous analysis.
Their results were consistent with the ideas of Meyer and Oppenheim and
also showed that the ignition process is strongly sensitive to sound wave and
entropy (temperature) perturbations. Their work did not, however, conclu-
sively determine the criteria of weak and strong ignition.

The present paper reexamines the H 2/0 2 ignition process using stability
and sensitivity analysis techniques, which are shown to yield further under-
standing of the chemistry of this process. The details of the analysis proce-
dure have been described previously [8]. However, this article extends the
methodology to include the case of degeneracy among eigenvalues.

Reaction Model

The reaction mechanism used in this analysis, given in Tables I and II,
includes 9 chemical species and 19 forward and reverse elementary reac-
tions and is based on a reaction mechanism originally developed and vali-
dated for CO/H 2/0 2 kinetics 19]. All of the thermochemical data are from
the JANAF tables [10] with the exception of the heat of formation for H02,

which is from Shum and Benson [11]. The temperature dependencies of the
thermochemical data are stored as polynomial fits in the format of the
NASA chemical equilibrium program [12]. The polynomial coefficients for
all species, except HO2, are from Kee et al. [13]. The polynomial coefficients
for H02 were obtained using the THERM code [14]. Rate constants, ob-
tained from literature evaluations, are specified for one direction only.
Thermochemical data are used to evaluate the reverse reaction rate con-
stants. Chaperon efficiencies are used for the dissociation/recombination
reactions as specified in Table II. This mechanism differs from that origi-
nally developed for CO/H 2/0 2 kinetics in the heat of formation of H02 (in
ref. [9], AH 29 8 = 3.0 t 0.4 kcal/mol [15]) and in the rate constant expres-
sions for reactions 14 and 15. The rate constant for the 1102 + H02
H202 + 02 reaction [16] is expressed as a double exponential to account for
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a negative acfivation enrergy observed at low temperatures (T < 700 K) due
to an association process and for a positive activation energy observed at
high temperature (T > 700 K) due to an abstraction process. For the pres-
sure-dependent rate constant of OH + OH - H20 2 [17], fall-off behavior
has been included and expressed in the Troe formulation.

The equations for a constant volume mixture reacting homogeneously are

(1) dC- _ i, C1(to)= C,= i=1,...N - 1
dt

dT N-i/N-i(2 d -~ (h, - RT)4 / : C ,,C,, T(to) = T0

where C, is the molar concentration of the i-th chemical species, 4 is the mo-
lar production rate of the i-th chemical species, T is the mixture tempera-
ture, C,, is the specific heat at constant volume of the i-th chemical species,
hi is the enthalpy of the i-th chemical species, and t is time. The kinetic
equations are solved numerically using LSODE [24] and CHEMKIN [25].

This system of equations is a good approximation for describing the kin-
etics of many experiments, including static reactors and shock tubes. The
present chemical model does not include surface kinetics nor does the mathe-
matical model have spatial dependence, and hence, the findings reported
here are based "purely" on gas-phase kinetics.

A comparison of ignition delays between model prediction and experimen-
tal measurement is given in Table III. The experiments are those of Skinner
and Ringrose [26] who studied ignition delays of a mixture consisting of 8%
H 2 and 2% 02 in argon which were heated behind reflected shocks to te'lip-
eratures between 964 and 1075 K and a pressure of 5 atm. For the calcula-
tions, the rate constants used for the pressure dependent reactions with Ar
as the collision partner are those reported in refs. [9] and [17]. The ignition
delay is defined here as the reaction time to the maxima in OH concentra-
tion. In Table IV, another set of comparisons between experimental and cal-
culated ignition delays are presented for higher temperatures and a lower
pressure. The experiments are those of Schott and Kinsey [27] who studied
ignition delays of a mixture consisting of 1% H2 and 2% 02 in argon which
were heated behind incident shock waves to temperatures between 1082 and
1836 and a pressure of 1 atm. The ignition delay is defined here as the time
required for the OH concentration to equal 1 x 10' mol/cm3 . Overall, the
agreement is observed to be better for the set of data at higher temperatures
than the data set at lower temperatures. The reported differences in igni-
tion delay data may result from both experimental and model uncertainties.
Indeed, accurate measurements of absolute ignition delay times are difficult,
as is evident from the reproducibility of the data themselves. Based on an
overall activation energy obtained from the low temperature experiments,
we note that at 1000 K, an uncertainty of even 25 K in T results in an uncer-
tainty of a factor of approximately 3 in ignition delay. Such an uncertainty
in T, is likely in the present experiments. Lastly, note that the agreement
between model and experiment is generally within the uncertainties of the
individual rate constants of the mechanism (see Table II). A discussion on
the most sensitive reactions of the mechanism is included below.
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TABLE III. Induction times for gas mixture containing 8% H2 and 2% 02 in argon at 5 atm to-
tal pressure

T(K) 1'(ms) 2(s)

964 15.0 25.9
965 10.0 25.0

981 4.3 14.4
1004 1.7 6.6
1005 2.3 6.4
1024 0.9 3.2
1075 0.22 0.36

r-induction time is definJed as the time required to reach the maxima in OH concentration.
e-experimental measurements (from Skinner and Ringrose [26]).
m-model prediction.

TABLE IV Induction times for gas mixture containing 1% H 2 and 2% 02 in argon at 1 atm total
pressure.

T(K) (s) T'(As)

1082 570 857
1085 630 838
1.-54 330 521
1180 340 441
1200 300 394
1275 310 264
1292 174 242
1304 140 229
1305 161 228

1310 185 222
1313 175 219
1615 55 70
1625 66 68
1644 58 64
1666 59 60
1825 40 39
1836 37 38

r-induction time is defined as the time required for the OH concentration to equal 1 x 10-9

mol/cm3 .
e-experimental measurements (from Schott and Kinsey [27]).
m-model prediction.

This mechanism has also been compared with experimental data from
flow reactor experiments [9,28], which have tested the kinetics during the
consumption of major reactants, assuming constant pressure and adiabatic
conditions. The comparisons, made between time dependent H2 and 02 con-
centration profiles and the temperature profile for dilute mixtures reacting
in N2 at 910 K and 1 atmosphere, were found to be good.

Green's Function Stability and Sensitivity Analysis

The constant volume model described above can be rewritten in simpli-
fied notation as

dX
(3) - = F(X), X(tO) = X,

m~m mmmmmm mmmmm mmm m
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where the dependent vector X consists of the species concentrations and the
system temperature.

The Green's function of this differential equation system arises from a
linearization about a time-dependent reference solution (and not about a
point in the solution). It satisfies the matrix differential equation

(4) dG(t, t, X) = J X(t)]G(t, t., X),G(to, t,, X) 1
dt . ..

where J is the N x N Jacobian matrix of the system equations with ele-
ments J,, = W/a X. The X dependence of G indicates that it is functionally
dependent upon the entire reference trajectory over the interval t4 -- t. The
formal solution of eq. (4) is

(5) G(t, t., X) = T exp[ J(t')dt'

where T is a time ordering operator [29].
The Green's function of the solution can be interpreted as the sensitivity

of the differential equation system to the initial conditions [30],

(6) G =j - ax 1(t)

a Xj(t0,)

The ij-th element of the matrix prescribes how the i-th component of X
changes at time t when thej-th component is perturbed at to. Hence, the ma-
trix contains stability information integrated over the history of the solu-
tion.

In terms of the Green's function, the response of the reference solution at
time t, 8(t), to a perturbation of initial conditions at t., 5(t,), is given by

(7) O(t) = G(t, t-,X) 8(to).

Aitu eigeiiaani ys of the finction i performed to assess the growth or

shrinkage of 8. The matrix G is of dimension N x N and, in general, nonsym-
metric. Although the elements of G are real, its eigenvalues and eigenvectors
may be complex. The Green's function may be expressed in diagonal form

(8) A(t, to, X) = UL(t, t.,X)G(t, t., X)U(t, t., X)

where U -' and U are the matrices ot ieit and righiL t:"eiictors. The row
vector ,U - and the column vector U correspond to A1,

(9) iU-1 G A,,U - 1

and

(10) GU = A,U.

Since G is real, complex eigenvalues may only occur in conjugate pairs. The
left and right eigenvectors form a biorthogonal set

(11) U-'U = 1

and G can thus be expressed in terms of these eigenvectors

(12) G = U A U- ' .
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The equation for evolution of the perturbation in terms of the eigenvalues
and eigenvectors of the Green's function is

(13) (t) = UA U-' 6(t,)

The eigenvalues of the Green's function indicate how much the associated
modes have grown or diminished in the course of the evolution of the system.
The condition for chemical stability is characterized by all eigenvalues less
than one in absolute value, and instability by eigenvalues greater than unity
in absolute value. A reaction model with an equilibrium state will have a
unit eigenvalue indicative of the marginal stability of the equilibrium state.

The eigenvectors form a time dependent coordinate system for the devia-
tions from a solution. The right eigenvectors U, are the modes of evolution
for deviations from the time dependent reference solution. The left eigen-
vectors ,U-' allow for a decomposition of a particular perturbation of initial
conditions 6(to) into projections along these modes. The inner product of a
left eigenvector with the initial perturbation, U - .5(to), is the coefficient
of the related right eigenvector which is modulated by the eigenvalue A, in
the course of evolution. This gives the information needed to adjust initial
conditions so as to emphasize or eliminate a particular mode at a later time.
Accordingly, from eq. (13) it is evident that projection operators which de-
compose the evolution of 6 into a sum of its independent modes may be de-
fined as P = UU-'.

Negative and positive components of the eigenvectors respectively corre-
spond to concentrations and temperature diminishing and growing from
their reference values X(t). Furthermore, the eigenvector normalization
U-'U = ~. implied by eq. (11) clearly shows that an arbitrary renormaliza-
tion of the right eigenvector by a constant C will require a corresponding
normalization by (C)-' of the left eigenvector.

Sensitivity Analysis

Sensitivity analysis in the present context is used to determine the role
that parameters play in determining stability behavior. Equation (3) may be
rewritten as

dX
(14) dX = F(X,a), X(t) = X

to explicitly include the system parameters. The paramet rs _ and the ini-
tial conditions are assumed to be independent of each other. The Green's
function certainly depends on these parameters, i.e., G = G[t, t,, X(_),a],
where the explicit and implicit dependence on the parameters is indicated.

Consider now the case of a perturbation in the matrix G associated with
eq. (10). Introducing a linear expansion in Q, A,, and U, yields

dG(a)
(15) G- G(2) + d

da

(16) A, - A,(a) + 9A (- da
da

dU,(a)
(17) U, + d- da
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-here da is an arbitrary differential change in the vector of parameters.
rhe arbitrariness of da in eqs. (16) and (17) is predicted on A, being nonde-
generate. The breakdown of this assumption will be treated as a special case
below. Substitution of these relations into eq. (10) gives

(18)
F dG i[ dU d] ciA, d[ dU'd_

G+ da _+- -dc a A, + -a U+ '-d

and collecting terms of like orders in da produces

(19(a)) GU , = AU,

dU, iA, ciG
(19(b)) [G- 1A,] - da - -da - - da U,

~da - da - da +

Equation (19(a)) is seen to be satisfied automatically since it is exactly the
same as eq. (10). In eq. (19(b)), the differential parameter change da may be
treated as arbitrary and thus removed to yield

r ~dU, [d,, dG~u
(20) G - =A _a [dl_ ia 

-da da
Multiplying eq. (20) on the left by ,U-' and utilizing eq. (9) yields

dA, 'U1dG
(21) da - d- U,

cia ,U da -

Returning to eq. (20) and multiplying on the left by , C 1 , i' # i, the follow-
ing is obtained

(22) , [AU,.U- dlA' - A,
da "XI I [ -I /

A similar expression applies to the left eigenvectors.
- In the actual application of H2/02 kinetics in this paper, one eigenvalue

(say A,) is found to dominate all others for virtually all significant times.
Then, for the special case of A I> A,. eq. (22) may be rewritten for i 1 in
approximate form as

(23) dul = I U, d_
cia A, 1 j ' da

Adding and subtracting the quantity

(24) iUU . . U ,

to the summation yields

dU1  dO 1(25) d1 = _ U, ,_ -  . Ul lI dG U11

da A, , - - a d -

where the summation is now over all i'. Making use of orthonormality,
1, U,IU- = 1, and eq. (21) yields,

dit] _[g FiGA 1] 1 [dG diA1(26) da A [,a da j Aida -da
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Under the same condition A, > A,,, note also from eq. (22 ' that dUjda,.
i * 1, will have essentially no component along U1.

The eigensensitivity calculations provide further information about the
dynamical behavior of a particular model under consideration. Eigenvalue
sensitivities are indicative of the effect on system stability of local excursions
in the vicinity of the parameter space operating point. The magnitude and
sign of the sensitivities provide a measure of whether changes in the system
will increase or decrease stability. Eigenvector sensitivities yield information
on how the dynamical modes of evolution are affected by alterations in the
system. Particular combinations of state space variables may act together
upon parameter variation, and this information is conveniently summa-
rized in the components of the eigenvector sensitivities. Again, the magni-
tude and signs of these components provide this quantitative information.

The above eigensensitivity analysis assumes that the system is nondegen-
crate. For the analysis of H2/0 2 kinetics in this article, this assumption was
valid for the largest eigenvalue whenever it dominated all others, which was
for virtually all significant reaction times. However, ,n many problems, de-
generacy may be important and the necessary modifications to the above
equations for the dcgenerate case are presented for completeness in
Appendix A. A potentially important case not included in this analysis
arises for near degeneracy where the purely degenerate or nondegenerate
forms are not strictly valid. In the present work, the Green's function, G,
and the parametric sensitivities of G,, aG,,a/fnkt, are obtained using the
AIM computer code [31].

Comparison to Variational Equation Stability Analysis

The traditional (variational equations) approach to stability analysis en-
tails an eigenanalysis of the Jacobian J. The first variational equation for
the system of eq. (3) is

(27) S(t) = J(X)-(t)

When J(X) can be assumed constant (e.g., for small time intervals from the
initial tirri, tj), the integrated equation of motion for _5 is

(28) _(t) = exp[J - (t - to)]_(t,),

which can be compared to eq. (7). The eigenvalues of the Jacobian J pre-
scribe how perturbations of the initial condition behave for small time inter-
vals near to. Growth of £3 is indicated by the matrix exp[l • (t - t,)] having
an eigenvalue greater than unity in absolute value. If J has an eigenvalue
with a positive real part, this condition holds and instability is indicated.
Except for autonomous linear systems, eq. (28) should be thought of as only
being valid near the initial condition X(to).

The variational equation analysis is considered to be local in two ways:
first, it depends on the position in state space of the solution, and second,
through the assumption that J(X) is constant, it is only valid for times near
the point in time where the eigenvalues ofJX(t)] are calculated. Objections
to this approach are based on the following possibilities; although a nearby
solution may be diverging from the reference solution at some point, it may
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later converge to it. An analysis of stability based on the Jacobian alone does
not incorporate this possibility in a us-ful way.

Note that if the Jacobian is independent of time, eq. (5) may be integrated
to yield

G(t, t, X) = exp[J" (t - t),

in which case the two methods coincide. This furthermore points out the
fact that the variational equations approach is local in time. The Green's
function analysis is local in the sense that 1_1 is assumed to remain small
over the course of its evolution. However, there is no restriction that t re-
main small. Hence, if solutions near the reference solution diverge from it in
some time interval, but converge to it in others, then the net effect is still
incbrporated in the Green's function.

Results

Figure 1 is a plot of the classical explosion limits for a stoichiometric mix-
ture of hydrogen and oxygen (from Lewis and VonElbe [32]). The three

100 ,

10 ":third limit
-' -x *x - x

- " Fig. 7. Fig. 8. Fig.

E no explosion

*Fig. 2. Fig. 3. Fig 4.-

L.. 1 second limit

01 explosion.

* . . first. limit

.001 _- -- I 1
600 700 800 900 1000 1100

temperature - K

Figure 1. Explosion limits tor a stoichiometric mixture of hydrogen and oxygen (from
[32]). The dashed lines are extrapolations of the first and third limits. The symbols
(crosses and squares) denote the initial temperature and pressure conditions of the ki-
netic calculatir ns described in Figures 2-11.
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limits havec been the subject of numerous articles (e.g., [33-36]), most re-
cently by Maas and Warnatz [37] who predicted the three limits by modeling
the detailed kinetics in spherical vessels with time-dependent, 1-D spatial
calculations.

The present work has concentrated on the ignition characteristics of ex-
plosive mixtures only. A dilute stoichiometric mixture of 1% hydrogen and
0.5% oxygen reacting in nitrogen was considered. The dilute mixture was
chosen in order to limit the total heat release to a temperature rise of ap-
proximately 100 K. Figures 2-4 present the kinetics and stabiiity analysis
results for three computational experiments, all with an initial pressure of
0.5 atm and with initial temperatures of 910 K, 970 K, and 1080 K, respec-
tively. The location of the initial conditions are illustrated on the pressure-
temperature phase-plane of Figure 1. (Note that the classical explosion
limits of dilute stoichiometric mixtures in nitrogen do not necessarily coin-
cide with the limits of nondilute mixtures.) Since the mixture was dilute,
the trajectory of the kinetics through pressure-temperature phase space fol-
lows a nearly constant pressure line to a final temperature approximately
100 K higher than T.

E T7-1 102o _, 1 ' ' ' ' ' 1 1' 1 1 1 1T1 2
i -

0 (a) 1000 (b)

E ,'H2

_ o ,980
04

--- H - 960

0 go

- -OH 940
22 -

- ~P 02 05 atm -",-. [ ,920

0 f
0~ 0 go0 -) r 'J  '  ' ;  '  '  ':

u 0 02 .04 .06 08 1 0 .02 04 06 08 i
time - S time - s

6 1 1 T

o (c) (d) H2-- : Cz -- -- 0
X 4 0 5

, 1>1 -- -- - -- - H20

> L. o ,-. ...
>1 0

0 02 04 06 08 0 02 04 06 Ot!
time s time S

Figure 2. Kinetic and stability analysis results for a dilute stoichiometric mixture of

hydrogen and oxygen reacting in a constant volume adiabatic ba~h of nitrogen. Initial

conditions: T = 910 K, P = 0.5 arm, X(H2) = 0.01, X(02) = 0.005, X(N2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately

100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure I is approxi-
mately a horizontal line ending at 0.5 atm and 1010 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue,
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Figure 3. Kinetic and stability analysis results for a dilute stoichiometric mixture of
hydrogen and oxygen reacting in a constant volume adiabatic bath of nitrogen. Initial
conditions: T = 970 K, P = 0.5 atm, X(H2) = 0.01, X(0 2) = 0.005, X(N2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately
100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure 1 is approxi-
mately a horizontal line ending at 0.5 atm and 1070 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue.

The species concentration and temperature profiles are all similar indi-
cating an increase in reaction rate with increasing temperature, and thus,
shorter induction and reaction times (see parts (a) and (b) of each figure).
Also, the higher the initial temperature, the higher the H, 0, and OH radical
concentrations.

In part (c) of each figure, the real parts of the largest and remaining other
eigenvaiues are given. Note that the reaction dynamics of each system are
controlled by a single eigenvalue (A 1), and that the magnitudes of the real
part of this eigenvalue are extremely large (of the order 10'), and hence, the
mixtures are highly explosive. As the temperature is increased, the maxi-
mum magnitudes of AI are observed to decrease. (More will be said on the
strengths of the explosions later). The magnitudes of the real part of the re-
maining eigenvalues were generally less than unity, except for a few unique
reaction times. In particular, Re(A2), the second largest eigenvalue exceeded
unity and equaled Re(A1) near the location where the two eigenvalues are in-
dicated to cross in the figures; for example at t = 0.04 s for the mixture
with T = 910 K (see Fig. 2(c)). Further, the imaginary components for both
AI and A2 were zero, except when Re(A2) equaled Re(A1). During this period,
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Figure 4. Kinetic and stability analysis results for a dilute stoichiometric mixture of
hydrogen and oxygen reacting in a constant volume adiabatic bath of nitrogen. Initial
conditions: T = 1080 K, P = 0.5 atm, X(H2) = 0.01, X(O2) = 0.005, X(N2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately
100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure 1 is approxi-
mately a horizontal line ending at 0.5 atm and 1180 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue.

the two eigenvalues are complex conjugates. Hence, IIm(A1) <- IRe(A1) for
all reaction times of interest here and thus only the real part of A, is plotted.

Comparison of the species concentration and temperature profiles with
the profile for Re(A1) enables the induction time to be defined as the time
from t equal zero to the first maxima in the eigenvalue profile. Due to the
dominance of A,, the subsequent analysis will focus on it and its associated
eigenvector U.

The eigenvalues describe the magnitude of change in species concentra-
tions and temperature. The associated right eigenvectors specify the direc-
tion of change. The components of the eigenvector associated with the AI
are reported in part (d) of each figure. Here, the components of U were nor-
malized according to U1./(7iU 1,,2)1 2 where the summation excludes the com-
ponent corresponding to the temperature variable. During the induction
period for the mixture with T0 = 910 K, the relative change in species con-
centrations can be characterized by two distinct overall stoichiometric vec-
tors. For 0 < t < 0.025 s, the growth of the perturbation follows

.65H2 + .5202 - .12H + .3HO2 + .44H 20.
The eigenvector then rotates to a new direction with constant components
for 0.03s < t < 0.036 s with an overall stoichiometric vector of

.71H 2 + .3102 - .62H20 + .18H.
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With increasing initial temperature, the distinction between the two overall
reactions during the induction period disappears. Inspection of the eigen-
vector components reveals loss of H02 formation as the temperature is in-
creased (compare Figs. 2(d), 3(d), and 4(d)). Once appreciable consumption
of the initial reactants begin, the eigenvector again rotates and continues to
until the reaction nears completion. For the mixture with T' = 910 K, ex-
amples of overall stoichiometric vectors are .68H2 + .302 -- .6H 20 + .16H
at 25% H2 consumption, .66H 2 + .3302 - .66H 20 at 50% H2 consumption,
and .6112 + .3502 + .2H --- .7H 20 at 75% 112 consumption. Hence, the direc-
tion of the eigenvector is never constant during the consumption of major
reactants. Comparison of U1 for different initial temperatures shows that
t!. orresponding eigenvector components to be nearly the same during the
first half of the reaction, and that the H-atom component increases and the
H2 component decreases during the latter half of the reactn a.q the initial
temperature is increased.

Note that near the end of H2 consumption, the response of the system is
entirely in the direction of H20 formation. This is to be expected because at
large reaction times, water vapor is the favored thermodynamic product.
During the early period of reaction, it was also generally observed that a
nearly identical reaction vector could be obtained if the stoichiometric coef-
ficients associated with the elementary reactions which had the largest
fluxes were each scaled by their corresponding fluxes and then summed.

The sensitivities of A I to the elementary rate constants of the mechanism
are given in Figure 5. At 910 K, A1 is sensitive to the rate constants of
H+02- OH + 0 and H+0 2 + M - HO2 + M. Other rate constants
have a relatively small sensitivity. As the temperature is increased, the
maximum magnitudes of both the absolute (aA1/afnk.) and relative
(aenAI /enkj) sensitivity gradients decrease. Further, the sensitivity of AI
to the rate constant of H + 02 + M is reduced significantly with increasing
temperature compared to that of the branching reaction. This trend is in
agreement with the loss of the H02 component of U1 at high temperatures.
Reactions of secondary importance include H2 +0 --+ OH + 0,
H2+02- H02+ H, H2+OH--*H20+ H, H0 2 + H--->20H, H02+
H - H2 + 02, and OH + 0 - H + 02, in decreasing order of importance.
Note that since the system is controlled by a single eigenvalue, the reactions
discussed above are ranked with respect to the entire system and not with
respect to a single dependent variable, as are the elementary sensitivity gra-
dients, aX,/afnkj, for different choices of Xi.

The sensitivity of the eigenvector direction to the elementary rate con-
stants of the mechanism is illustrated in Figure 6 for the system with an
initial temperature of 910 K. The sensitivity gradients, aU1 ,/kankj, for H2,
02, H20, H, H02, and OH components are shown. To evaluate these gradi-
ents, the approximation A, > Ai, , was made, allowing for use of eq. (26),
which is valid for all time shown in Figure 2 except near 0.04s where AI
passes through zero. The important reactions are the same as those found
important to A,; however, the order of ranking of important reactions was
not always identical for each species. The most sensitive species are the
H20, H2,02, H02, and H components, listed in decreasing order of sensitiv-
ity. However, examination of the corresponding normalized sensitivities for
H2, 02, H20, and H02 shows that during the interval 0 < t < 0.025s, the
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Figure 5. Sensitivity gradients of the largest eigenvalue with respect to various reac-
tion rate constants. Initial conditions: X(H2) = 0.01, X(0 2) = 0.005, X(N 2) = 0.985,
P = 0.5 atm, (a) T = 910 K, (b) T = 970 K, (c) T = 1080 K. The numbers denote the re-
actions of Table II. The letter "b" after the number denotes the backward reaction.

relative responses of these species to perturbations in k, are all approxi-
mately equal, with the signs of the gradients for reactants, H2 and 02, oppo-
site to those of products, H2 0 and HO2 . Hence, if either k, or k9 is
perturbed, the species coefficients are observed to change dramatically, but
in a manner such that the direction of the reaction vector changes little, ex-
cept in the formation of H-atoms. From Figure 6(d), an increase in either k1
or k9 produces a slight increase in the amount of H-atom formation. For
times greater than 0.03s, the H02 component becomes insensitive to pertur-
bations in any of the rate constants. Although both the H-atom and the OH
radical components are relatively insensitive to rate constant perturbations,
it is interesting to note that the H-atom is sensitive to reaction 2 while the
OH radical is sersitive to reaction 3. At higher temperatures (970 K and
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Figure 6. Sensitivity gradients of selected eigenvector components associated with the
largest eigenvalue with respect to various reaction rate constants. Initial conditions:
X(H 2) = 0.01, X(0 2) = 0.005, X(N 2) = 0.985, P = 0.5 atm, T = 910 K. The numbers de-
note the reactions of Table I. The letter "b" after the number denotes the backward re-
action.

1080 K), the sensitivity gradients of eigenvector components were found
consistent with those observed at 910 K.

In comparison to the results at 0.5 atm, Figures 7-9 present the kinetic
and stability analysis results for another three computational experiments,
again with the same initial temperatures of 910 K, 970 K, and 1080 K, but
all with an initial pressure of 5 atm. The location of the initial conditions
are also illustrated on the pressure-temperature phase-plane of Figure 1.

Again, all three systems are controlled by a single eigenvalue. However, at
low temperatures, the ignition process is characterized by an eigenvalue
with a low magnitude (order of 10", see Fig. 7) compared to that at high tem-
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Figure 7. Kinetic and stability analysis results for a dilute stoichiometric mixture of
hydrogen and oxygen reacting in a constant volume adiabatic bath of nitrogen. Initial
conditions: T = 910 K, P = 0.5 atm, X(H2) = 0.01, X(0 2) = 0.005, X(N2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately
100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure 1 is approxi-
mately a horizontal line ending at 5.0 atm and 1010 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue.

peratures where the magnitude (order of 10', see Fig. 9) is close to those ob-
served at 0.5 atm. Based on these magnitudes, the low temperature system
can be classified as "weak" ignition while the high temperature system can
be classified as "strong" ignition, as discussed earlier. Note that ignition at
0.5 atm was all "strong" ignition. The transition from "weak" to "strong"
ignition is clearly illustrated for the intermediate temperature system of
Figure 8. The eigenvalue first shows "weak" ignition at about 0.08s and
then "strong" ignition at about 0.116s. Transition occurs at a temperature of
1028 K.

At 910 K, 1 during the induction period is .6H2 + .602 - .37H 20 +
.371102 + .04511202. Note that under the conditions of "weak" ignition, the
eigenvector U remains constant during the consumption of major reactants

with an overall stoichiometric vector of .66H 2 + .3302 - .661120.
At 970 K, U1 has nearly the same components during the induction time

and first stage of reaction as found at 910 K. However, when the tempera-
ture of the mixture reaches 1028 K, the eigenvector begins to rotate !Is ob-
served at 1080 K and for all three temperatures at 0.5 atm.

The "weak" ignition process is sensitive to rate constants of a different
group of reactions (see Fig. 10(a)). In decreasing order of importance, these
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Figure 8. Kinetic and stability analysis results for a dilute stoichiometric mixture of
hydrogen and oxygen reacting in a constant volume adiabatic bath of nitrogen. Initial
conditions: T = 970 K, P 5.0 atm, X(H2) = 0.01, X(0 2) = 0.005 X(N2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately
100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure 1 is approxi-
mately a horizontal line ending at 5.0 atm and 1070 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue.

reactions are, H 2 +H0 2 -H 2 0 2 +H, H+ 2r+oM- H 2"+M, H+
O2 -'OH+O, H 2 O2 +M--OH+OH+M, H 2 +0 2 -HI+ HO2, H+
H 2 -iH 2 + o2, H+H 2 --3OH+OH and H 2 +HO2 - H2o 2 +O 2.
During the consumption of major reactants, the same reactions remain im-
portant; however, the order of ranking changes. For example, at 50% con-
sumption H2, the ordering of most important reaction rate constants is
H +0 2 --3.OH+O, H+ H0 2 -- H 2 +O 2 , H 2 +0 2 - H+ HO2, H02 +
HO2 --*H 2 O2 +O 2 , H+0 2 +M-H02 +M, H+HO2-. OH+OH,
H 2 0 2 +M - OH +OH +M, H 2 + H0 2 --->H2 0 2 +H, and H0 2 +OH---
H20 + 02. The "strong" ignition process at 5 atm (Fig. 10(c)) is sensitive to
the same reactions as the "strong" ignition process at 0.5 atm. As might be
expected, the first stage of the intermediate temperature (Fig. 10(b)) igni-
tion process is sensitive to the rate constants of reactions characteristic of
"9weak" ignition while the second ignition process is sensitive to the reac-
tions important to "strong" ignition.

The sensitivity of the H2, 02, H20, HO2, and H20 2 eigenvector compo-
nents at T = 910 K are presented in Figure 11. The condition of A I i~i
allowing for use of eq. (26), is satisfied everywhere except near t =0.4s. At
t = 2.2s, A, is still approximately 100 times larger than the next largest
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Figure 9. Kinetic and stability analysis results for a dilute stoichiometric mixture of
hydrogen and oxygen reacting in a constant volume adiabatic bath of nitrogen. Initial
conditions: T = 1080 K, P = 5.0 atm, X(H 2) = 0.01, X(0 2) = 0.005, X(N 2) = 0.985, (a)
species concentrations, (b) temperature. Note the temperature rise of approximately
100 K. Since the mixture is dilute, the pressure remains nearly constant, and hence, the
trajectory of the kinetics on the pressure-temperature phase-plane of Figure 1 is approxi-
mately a horizontal line ending at 5.0 atm and 1180 K, (c) the real parts of the eigen-
values, (d) the components of the eigenvector associated with the largest eigenvalue.

eigenvalue. Again the most sensitive components are the H2, 02, H20, and
HO2 species. However, relative to the results at 0.5 atm, the stable species
are about an order of magnitude more sensitive while the unstable species
are about an order of magnitude less sensitive. At 50% consumption H2, the
ranking of important reactions follows the order: H + 02 --+ OH + 0, H +
O +M -HO 2 +M, H + HO2--- 2OH, H + HO2 ,H 2 +0 2, H20 2 +
M - OH + OH + M, H2 + HO2 - H20 2 + H, HO 2 + HO2 - H20 2 + O2 ,
HO2 +OH-H 20+O 2,HO 2 +O-O 2 +OH,H 2 +OH-H 20+ Hand
H 2 + O - OH + H.

Using the same dilute mixture as analyzed at 0.5 and 5 atm, the tempera-
tures of transition from weak to strong reaction were evaluated from kinetic
calculations for pressures ranging from 1 to 10 atm. The results, plotted as
solid triangles in Figure 12, show transition to occur over a range of tem-
peratures, which is wider at lower pressures than at high pressures. This
range of transition temperatures resulted from varying the initial tempera-
ture of the mixture over approximately 20 K. For example, at a pressure of
6 atm, the resulting variation in transition temperature, defined here as the
temperature corresponding to the second positive peak in the maximum
eigenvalue profile, was 4 K for a variation in T of 20 K.
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Figure 10. Sensitivity gradients of the largest eigenvalue with respect to various reac-
tion rate constants. Initial conditions: X(H2) =0.01, X(O2) =0.005, X(N2) = 0.985,
P = 5.0 atm, (a) T = 910 K, (b) T = 970 K, (c) T = 1080 K. The numbers denote the re-
actions of Table II. The letter "b" after the number denotes the backward reaction.

The classical extended second limit, evaluated from the relationship
[M] = 2k1/k9 [32], is also plotted in Figure 12. For a given pressure, transi-
tion is observed to occur at a lower temperature than indicated by the clas-
sical extended second limit. The deviation appears to widen as the pressure
is increased. According to the sensitivity analysis results of Figure 10(b),
this deviation may result from neglecting the effects of reactions 17(b), 10,
and 11 in the derivation of the classical second limit.

Note that in the explosive region above the "extended" second limit and
the third limit, formation of 1102 and H202 and their consumption are im-
portant to the rate of reaction. The hydroperoxy radical is formed almost
entirely through H + 02 + M --* HO2 + M. Consumption of HO2 occurs
through reaction with H-atoms, HO02 + H --* OH + OH and 1102 +
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Figure 12. Explosion limits for stoichiometric mixtures of hydrogen and oxygen. The
solid line in the lower left hand corner of the figure and the dashed line are the second
and third explosion limits shown earlier in Figure 1. The dash-dot-dash line is the classi-
cal "extended" second limit. The solid triangles are the transition temperatures calcu-
lated from the eigenanalysis of the kinetic solutions for the dilute mixture consisting of
1% H 2 , 0.5% 02, and 98.5% N 2 . The two insert figures report the temperature profiles
for a stoichiometric H./air mixture with an initial temperature of 910 K and initial pres-

sures of 5 atm (insert a) and 2 atm (insert b). The x's denote the temperatures where
d 2T/dt2 was a maximum for the two nondilute calculations.

species in the eigenvector components of Figure 7 during H2 and 02 con-
sumption. However, note from the overall reaction vectors that the induc-
tion reaction and the reaction which occurs during the first 50% consumption
of H2 are more exothermic above the extended second limit than below this
limit. For example, the overall reactions and associated exothermicity for
consumption of one mol of H2 at 910 K and 0.5 atm were:

H 2 + 0.802 - 0.68H 20 + 0.18H + 0.46HO2  AH2 9, = -28.3 kcal/mol

H 2 + 0.43502 - 0.871i 20 + 0.2tH AH 298 = -36.7 kcal/mol

during the induction period and

H2 + 0.4402 - 0.88H 20 + 0.24H AH29s = -38.4 kcal/mol
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durifig 6e first 50% consumption of H 2. At 910 K and 5 atm, the corre-
sponding results were

H2 + 02 - 0.635H 20 + 0.63HO 2 + 0.05H 20 2  AH298 = -36.1 kcal/mol

during the induction period and

H2 + 0.502 - H 20 AH298 = -57.8 kcal/mol

during the consumption of H 2. This result is of particular importance to
nondilute mixtures.

For nondilute mixtures, e.g., a stoichiometric H2/air mixture, a similar
eigenanalysis does not produce the dual character in the maximum eigen-
value as observed in Fig-are 8. Instead, the maximum eigenvalue after a
% short period of time grows rapidly to a value of ca. 10', and then continues
to grow monotonically and more slowly up to ca. 10" rather than decrease as
observed for the dilute mixture at T = 970 K and P = 5 atm. A sudden ex-
ponential growth to a value of ca. 10" is then observed. After this peak, A1

goes negative reaching a minimum peak. During the growth of the eigen-
value from 103 to 10, the mixture heats up appreciably due to the exother-
micity of the HO2 reactions until it reaches a temperature near the extended
second limit, at which point the eigenvalue rapidly jumps to 10". For nondi-
lute mixtures, this temperature essentially represents the ignition tempera-
ture, with the chemistry prior to this temperature representative of
induction chemistry, i.e., continued growth in the radical pool. In Figure 12,
both the temperature profiles as a function of reaction time (insert figures)
and the pressure-temperature trajectories (solid lines) are reported for this
stoichiometric H2/air mixture with an initial temperature of 910 K and ini-
tial pressures of 5 atm (insert (a)) and 2 atm (insert (b)). The "x's" on the
temperature-time profiles and the pressure-temperature trajectories corre-
spond to the temperatures where d 2T/dt 2 equalled a maximum. It is apparent
that between the extended second limit and third limit, the overall reaction
is characterized by a thermal explosion until the transition temperature is
reached where the reaction becomes a branched chain explosion.

Finally, according to the results of Figure 12, the transition temperature
for the dilute stoichiometric H 2/0 2 mixture reacting in N2 at 1 atm is ap-
proximately 910 K while at 5 atm this temperature increases to approxi-
mately 1028 K. For dilute mixtures in Ar, the transition temperatures shift
to slightly lower values because of the decrease in efficiency of Ar as a third
body in the recombination reaction H + 02 + M --* HO2 + M. Assuming
that the effect of mixture stoichiometry on the transition temperatures is
small, all of the experimental ignition delays reported here at 1 atm
(Table IV) and only one at 5 atm (T = 1075 K, Table III) can be classified as
"strong" ignition. The remainder of the ignition delay data at 5 atm is likely
controlled by "weak" ignition. This separation of the data indicates that the
agreement between experiment and model is consistently better for
"strong" ignition than for "weak" ignition. According to the sensitivity
analysis results, model parameters which should be considered for possible
refinement to improve the agreement of weak ignition include the rate con-
stants of reactions 17(b), 9, 15(b), 10, and 10(b), and also the heat of forma-
tion for HO 2. The heat of formation of HO2 is important because in the
model the rate constants for reactions 17(b) and 15(b) were obtained from
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the forwarcf rate constants and thermochemical data. Of all the thermo-
chemical data necessary for these reactions, the data for HO2 have the
greatest uncertainties.

Clearly, more accurate and detailed experimental data are needed before
further model validation and refinement can be made. In fact, the present
analysis indicates that the maxima in OH concentration may be a poor mea-
sure of experimental ignition delays for the low temperature experiments of
Skinner and Ringrose. By the time the OH concentration has reached its
maximum, significant amounts of H2 have been consumed and heat re-
leased. Hence, the temperature history has to be well characterized, since
the reaction is no longer isothermal.

Conclusions

In the present article, the extended second limit is shown to be a kinetic
boundary important to both the ignition and reaction characteristics of di-
lute H 2/0 2 mixtures. Transition is generally observed to occur at tempera-
tures lower than predicted by the classical theory. The results show that for
extremely fast reaction to occur in H 2/0 2 mixtures (nondilute or dilute), the
temperature of the mixture has to exceed this transition temperature for
any given pressure. This transition may occur during the induction time or
during the consumption of major reactants.

The stability-sensitivity eigenanalysis provided a convenient means to
identify this phenomena and more importantly quantify the differences be-
tween "weak" and "strong" ignition/reaction. Due to the fact that the system
was driven by a single eigenvalue, the sensitivities of this eigenvalue and its
associated eigenvector provided all the information necessary for under-
standing the controlling reactions of the mechanism. Although not a goal of
this article, the eigenanalysis of the Green's function matrix produced over-
all reaction vectors which may be used to gain insight into mechanism re-
4uction and lumping. Eigenanalyses of other matrices have been used for
this purpose previously [38,39].

Acknowledgment

The authors acknowledge support from the Air Force Office of Scientific
Research and the Office of Naval Research.

Appendix A. Degenerate Sensitivity Analysis

Equations (21) and (22) give the eigenvalue and eigenvector sensitivi-
ties provided that the system is nondegenerate. Consider now the degen-
erate case in which the matrix G has a portion of its eigenvalues which are
degenerate

(A-1(a)) GU, EU, i = 1,...,S

(A-I(b)) GU, = ALU, i = S + 1.... N

where E is the e:genvalue of S fold degeneracy and the remaining eigenval-
ues As+,, As+2,. . . AN are assumed to be nondegenerate. Without loss of gener-
ality, the first S eigenvectors are chosen as the degenerate set. The
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eigenvectors U, in eq. (A-1(a)) are a particular, but nonunique set. Indeed,
there is an infinite number of eigenvectors which would satisfy eq. (A-I(a))
by sinply taking linear combinations of this particular set. This ambiguity
causes difficulty when calculating the sensitivities of eigenvalues and eigen-
vectors.

Consider now the degenerate portion of the eigenvectors in eq. (A-1(a))
and again make exactly the same expansion as implied in eqs. (15), (16), and
(17) except in this case

(A-2) G G(a) + da
= dc -

dEe(a)(A-3) Et --- E( a) + --- =.da f = 1 .... S
da

(A-4) -- be(a) + da

where
S

(A-5) (b = aU,,
M=1

is as yet an arbitrary linear combination of the degenerate eigenvectors.
This produces a set of equations analogous to eq. (19) with the following
form

(A-6(a)) G45 = E01

1E !Lotd~ .d dG Q ]b
(A-6(b)) G _ da = d a -dG

for C = 1, 2,... S. In eq. (A-6(b)), an ambiguity exists because of the arbi-
trariness in the degenerate set of eigenvectors _ e. A unique specification of

the eigenvalues can only be achieved by giving a specific perturbation
(dG/da) da since different perturbations would correspond to different
possible zeroth order unperturbed degenerate eigenvectc's Of. Therefore,
the differential variation da cannot be removed from eq. (A-6(b)). Multipli-
cation of eq. (A-6(b)) on the left by j,_-', i' = 1, 2, ... S with i,O-' • = B,

shows that the perturbed eigenvalues may be chosen to diagonalyze the per-
turbation matrix

dcx dd Q<
(A-7 da ai, = (-"da_ da "0i), i = l, ..S
A7) d--a Id -" - ""

This equation is the degenerate analog of eq. (21). Solution for the perturbed
eigenvalues (dE,/da) • da from eq. (A-7) will also yield a particular linear
combination _4_k of degenerate eigenvectors in eq. (A-5). In a similar fashion,
multiplying eq. (A-6(b)) on the left by ,.U-', i' = S + 1,... N yields

(A-8)

d-a r. dca 0 [A,.- El i = 1....S

Equation (A-8) is the degenerate analog of eq. (22).
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At this point, several comments need to be made. First, in eq. (22) the
summation i' covers all of the degenerate and nondegenerate states except
as indicated in the summation. However, when the sum runs over the de-
generate states it is necessary to include the following replacement

Ai. -) E and Ui, - _

The latter replacement just insures that the proper superposition of the de-
generate states is utilized. The derivatives of the eigenvalues and eigenvec-
tors in eqs. (A-7) and (A-8), respectively, for the degenerate case are
sometimes referred to as directional derivatives since they require a par-
ticular specification of a differential parameter change da. Assuming the
panameters individually have a distinct physical meaning, the natural choice
is to perform the analysis sequentially with the separate choices d =- dal,
da - da2, .. etc. Note that in the latter case of a single parameter change,
the differential term in eq. (A-6(b)) may again be removed but it always
must be understood that the resultant sensitivities correspond to that par-
ticular differential parameter change. Note also that the restrictions on the
summations in eqs. (A-8) and (22) remove what would otherwise be another
ambiguity in the eigenvector derivations. In particular, these summation
restrictions specify that the eigenvector derivatives have no components
along the corresponding unperturbed ones and this is sometimes referred to
as a specification of normalization.
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ABSTRACT

The utility of individual elements of Green's function matrices, in

the investigation of dynamic couplings, is illustrated by offering examples

from linear and nonlinear kinetics and quantum dynamics. The concept of

reduced Green's functions affords a detailed characterization of the actual

pathways mediating these couplings. Self similar behavior between

different elements of the Green's function matrix indicates the presence of

strong coupling between different variables of the model. We investigate

the structure of the entire Green's function matrix to examine such self

similar behavior and other simplifying characteristics of concern for

physical insight as well as for economic modeling of the dynamic systems.

Global structure in the entire Green's function matrix may be used to

reduce the complexity (number of dependent variables) in a model.



I. Introduction

Green's functions are traditionally used as a means for solving

linear models driven by inhomogeneous source terms. The interpretation of

Green's functions as response functions underlies their use in propagator

based methods of Quantum Mechanics.1 While the residues and poles of the

Green's functions have found extensive use in spectral analyses, 2 the use m

of Green's functions for investigating the coupling between different

variables of dynamical systems has found limited applications so far. 3 In

this paper, we offer examples of their use in a diverse set of complex

chemical/physical problems to call attention to the power and efficacy of m

these functions in deciphering the latent dynamic couplings, generally

masked by the complex network structure in the model.

Section II.a will first examine the role of Green's functions as

response functions by identifying them as sensitivity coefficients of the

model. The new concept of reduced Green's functions affords a detailed

characterization of the complex dynamics and is discussed in Section II.b.

U
Section III presents illustrative examples of Green's functions and some

related reduced Green's functions from nonlinear kinetics problems, includ-

ing as well as excluding transport, and emphasizes their use in revealing

latent system couplings. Further examples from some model problems in m

quantum dynamics and linear kinetics are presented in Section IV. The

divetse examples underscore the universal utility of these concepts. In

dynamical systems with strong coupling, dominant control of a dependent 3
variable can result in self similar behavior between the different elements

of the Green's function matrix. Examples from the use of the entire

Green's function matrix for seeking simplifying features of the complex

network of elementary steps in kinetics and their use in formulating more m
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tractable models are offered in Section V. A brief summary of our findings

concludes the paper.

II.a Green's Functions as Response Functions

To best understand Green's functions from diverse chemical problems

we consider cases where the physical phenomena are described by a vector

set of differential equations

L(Q,a) - 0 (II.1)

Here 0 is the sought after vector of dependent variables (e.g., concen-

tration profiles in kinetics, amplitudes in quantum mechanics or the canon-

ically conjugate variables of classical Hamiltonian dynamics) and Li is an

element of the appropriate differential operator vector for the respective

problem. The elements of the vector a constitute the system's physical

parameters (e.g., rate constants and diffusion coefficients in kinetics,

potential surface parameters in dynamics, etc.). The spatial and/or

temporal dependence of the solution vectors is not explicitly shown for

clarity and is assumed to be known numerically through the solution of the

system of equations (II.1), augmented by appropriate initial and/or

boundary conditions. Sections III and IV will provide specific physical

illustrations of Eq. (II.1).

To establish the physical content of the system Green's function we

modify Eq. (II.) by the addition of an incremental flux term SJi at time t

and position x (we shall just consider one dimensional spatial problems for

simplicity of illustration) as a source for the ith equation.

Li(Q,7) - 6Ji(x,t) (11.2)
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Functional differentiation of Eq. (11.2) with respect to the new added flux

terms leads to

IU ( 8L so0
80n 6J n in'

n

Here the Green's function matrix elements Gnn,(x,t;x',t') - 1
60n(x,t)/6Jn,(x',t') are functional derivatives and provide the response of

the nth dependent variable at (x,t) to a change in the flux of the 
n th

dependent variable at a prior time t' and position x'. This statement is

explicitly evident from the first order functional Taylor expansion implied

by Eqs. (11.2) and (11.3) to produce
4

60(x,t) - Z Jdx'Jdt'G ,(xt;x',t')6Jn.(x'it') (11.4) 36OnnP j  nn n

an Z fdx'Jdt'G nn,(xt;x't')aLn(x',t')/aai 
(11.5)

The identification of the solution to Eq. (11.3) as a Green's function may

be made regardless of whether Eq. (II.1) is a linear equation. A Green's

function is associated with the linear differential equations driven by the I

Jacobian, aLi/3On, in Eq. (11.3). A basic application of the system

Green's function is to provide a closed form expression for the parametric

sensitivity coefficients, although this latter application is not the focus 3
of the present paper.

In the case of pure temporal kinetics, allowing for discrete

parametric variations only, the identity of Gnn,(t,t') - 60n(t)/6Jn,(t') is

P
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easily established. As a convenient shorthand notation, the pure temporal

Creen's function Cnn,(t,t') is sometimes written as 8On(t)/aOn,(t'). In a

similar fashion, a steady state Green's tunction may also be identified as

having the elements Gnn,(x,x') - 6On(x)/6Jn,(x') with a similar

interpretation.

In the case of Heisenberg's equation of motion for the time evolution

operator, the Green's function G(t,t') for the corresponding sensitivity

equations is well known to be the time evolution operator itself.5 The i,j

matrix element of the time evolution operator represents the transition

amplitude between eigenstates i and j as driven by the coupling in the

Hamiltonian. These features are discussed in detail in a following

section.

From Eq. (11.4) it is evident that the Green's function matrix

determines the stability of a dynamical system: a large magnitude of Gij

being indicative of instability with respect to changes in the flux of the

jth dependent variable. In the case of pure temporal systems, since for

reasons of causality the disturbance 6Jj(t') must precede the response

8Oi(t), the relation of Green's functions to stability analysis and control

theory becomes readily apparent.6 (Analogous arguments also apply to the

temporal dependence of space-time systems). The eigenvalues of the G

matrix (actually their logarithms) may be identified as time-dependent

Lyapunov exponents
7

A (t,t') - T (t,t') (t,t,)U (t,t') (11.6)

where ln(t,t') is the ntheigenvector and An(t,t') is the associated

eigenvalue of G. Dynamic instability is indicated by any of the

eigenvalues satisfying IAnl>l. These latter quantities depend on the
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current time as well as the time of the initial condition specification,

thus indicating a retention of system integrated time history. One may

also probe for which physical variables contribute to the system stability
6

by differentiating Eq. (11.6) with respect to a system parameter to produce

8An(tt')/a8j. An accompanying expression for the eigenvector sensitivi-

ties may also be established. The critical nature of this information is 5
specially important when parameters are of a design nature and controllable

in the laboratory.

In the case of the steady state Green's functions8 Gij(x,x'), the

presence of any eigenvalue satisfying IAnI>l would imply that the dynamic

system is not at a stable steady-state. In such a case, the full spatio-

temporal problem should be solved and propagated sufficiently far in time

to achieve a stable steady-state solution. 3
In any problem where the dependent variables are directly measurable

or controllable, then the Green's function elements themselves may also be

measured. This measurement, for example in kinetics, could be achieved by I
disturbing a given species (or eigenstate in quantum dynamics) and moni-

toring the response amongst all of the other species (or eigenstates). In

this way, it may be possible to determine how to alter the spatial or tem-

poral response of a system by a judicious use of Green's functions.

II.b Reduced Green's Functions

While the elements of the Green's function matrix provide information

about the coupling between the dependent variables, they do not reveal the

pathway of coupling. As a concrete example, consider the case of pure

temporal kinetics governed by the equation
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The right-hand side of Eq. (11.7) contains all of the information about the

kinematic coupling in the system, but the actual dynamic coupling may dif-

fer due to complex nonlinear interactions only present in the solution to

the equation. The magnitude of Cij indicates if Oi and Oj are coupled but

it does not tell us whether a third (or several other) dependent variables

mediate the response. In other words, the pathway or dynamic coupling is

not evident from examining the original differential equations, nor is it

revealed by the fundamental Green's function G alone.

This detailed pathway insight into the actual modes of coupling is

provided by an analysis of the reduced Green's functions. Such an analysis

is carried out by considering variations of only a portion of the dependent

variables while holding another portion constrained as fixed. Therefore,

upon consideration of the dependent variable vector, we may partition it

into two parts Q - (Q',Q") where variations of the second portion are con-

strained to be 60" - 0. Accordingly, we may calculate the elements of the

reduced Green's function

, 
6 0iCj j-- (11.8)

C i -61 1 60"-0

where this constrained matrix satisfies an equation of exactly the same

form as Eq. (II.3), except that now the Jacobian is of reduced dimension

with the columns and rows associated with 0" removed. Elements of this

reduced matrix probe the system's dynamic response where all couplings

mediated by 0" have been disabled. It should be emphasized that while 0"

Page 6



have been frozen, they have not been deleted from the problem and their

nominal values obtained from the solution of Eq. (II.) are retained in the

reduced calculation. Only their response to variations of 0' is not

allowed. A judicious partitioning of 0 into 0' and Q", followed by an

examination of the corresponding reduced Green's function, is a useful tool

for deciphering the dynamic couplings responsible for the system behavior.

In the following sections, we offer examples from several problems to

illustrate these varied roles of the Green's function and some related,

reduced Green's functions.

I

I

U

I

U

I
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III. Green's Functions for Pure Temporal Reactions and Reaction-Convection-
Diffusion Systems

The general class of problems treated in this category may be

described by the following reaction-diffusion-convection equation

; - pu - constant

p'k D aok 00.ka ax k • X + fk(O, T) (III.la)" O Ox t x -- '

N

T - L4iT1 iTL Pk 0 k1 HQ,,)(IlbPat- C ax max + x k Cpk 8x 8x + C(III.b)Cp P P

k-i

0 :5 x :s L (lll.lc)

where for simplicity we confine ourselves to considering only one sp- al

3 dimension. In this equation, Ok is the mass fraction of the kth species, T

is the temperature, i is the mass flow rate, Dk is the diffusion

coefficient of the kth species with respect to the mixture, fk is the rate

if of production/destruction of the kth species, H is the reactive enthalpy

term, A is the mixture thermal conductivity, C p is the constant pressure

heat capacity with individual components Cpk, u is the velocity and p is

the mass density of the mixture. The vector o represents the remaining

system parameters (e.g., activation energies, Arrhenius pre-exponential

factors, etc.). The system of Eqs. (I1.1) is supplemented by requisite

initial and boundary conditions, an equation of state where appropriate an

equation for the conservation of momentum may also be prescribed.

Reaction-convection-diffusion models defined by Eq. (11.1) involving

both temporal evolution and spatial transport are difficult to solve and

two natural restricted cases A and B below have seen maximum activity:
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A. The pure temporal case without spatial diffusion or convection

described by

dt- fk(Q, T) (III.2a)

dT H(Q,q,T)
P dt " p (III.2b) 3

along with a set of initial conditions

Ok(O) - Ok ; T(O) - T (111.3) I
B. The steady state limit without any time dependence described by:

- pu - constant (III.4a)

m -- d dx dok + fk ( Q Z T )  (III.4b)
mdx d( d

N

-dT 1 d[A~rj+1_ aOk80 H(0,,T
-dT 1 d dT k _T + (III.4c)

dx C dp dx C DkCpk ax Ox Cp p
k-I

In the case of a premixed laminar flame the appropriate boundary conditions

at x-O are I

T(O) - T 0 0ok - kpDk d fk

and at x - L

d'r - o,-= 0 (III. 5b)dx L -dx L
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where To is the temperature of the unreacted gas (for details, see ref. 9).

If the problem is adiabatic, then h is an eigenvalue and an additional

5 boundary condition is needed.

The Green's function for these particular limiting situations satisfy

special cases of (11.3). For Eqs. (111.2,3) we have

I (lat- 2)G(tt') - 16(t-t') (111.6)

where Jij - afi/aOj, 2(t',t') - I and for reasons of causality, Gij(t,t') -

3 0 for t<t'. For the steady state limit described by Eqs. (111.4,5), the

system Green's function is defined to satisfy the following equation

3 xm - ax ! + J G(xx') - 16(x-x') (111.7)

and G(x,x') - 0 for x,x' on the boundaries (0 or L) with D being a diagonal

matrix of diffusion coefficients.

3 Various strategies for the solution of Eqs. (111.6) and (111.7) have

been reviewed elsewhere, 3 and we will instead focus upon examples

establishing the utility of Green's functions in investigating the dynamic

couplings not readily discernible from a knowledge of the underlying

kinematic mechanism alone.

As the first example, we consider the temporal kinetics of the wet

oxidation of carbon monoxide. A comprehensive reaction mechanism I0 for

describing this process is given in Table I. An inspection of Table I

reveals that several elementary steps directly participate in the consump-

tion of carbon monoxide. At intermediate and high temperatures, it is well

established that the major consumer of carbon monoxide is the hydroxyl
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I
radical through reaction 11. At lower temperatures (below -900 K), reac-

tion 9, with the hydroperoxy radical, may dominate. The exact role of

other intermediates of the system (e.g., H, 0, H202 , HCO, etc.) on the

kinetics of the oxidation process is very difficult to discern from the

mechanistic (kinematic) data of Table I since for some intermediates a

direct consumption reaction does not exist, while for others, the rate

constants are very small.

Consider, for example, the correlation of carbon monoxide with hydro-

gen atoms. The only elementary step involving the direct reaction of H and

CO is reaction 52. However, the thermodynamically favored direction of 3
this reaction is the reverse reaction 51. Indirectly, the H atom is

involved in the production and consumption of the important hydroxyl and

hydroperoxy radicals (e.g., through steps 15, 18, 48, etc.). Due to a 3
variety of chain branchings in the reaction mechanism, the indirect effect

of H upon CO could be quite significant. Brute force estimation of the

coupling between H and CO would necessitate repeated solution of Eqs.

(111.2) for a variety of H atom concentrations and at different initial U
times. The use of the nominal and reduced Green's functions obviates this

laborious investigation and provides quantitative information about the

desired couplings. I
To illustrate this point, we present two Green's function response

surfaces, 6CO(t)/6JH(t') and 6CO(t)/JOH(t'), in Figure 1, for a dilute

carbon monoxide-water-oxygen mixture reacting homogeneously and isother- 3
mally in nitrogen at 1100 K and 1 atmosphere. These results were obtained

by solving Eqs. (III.2a and 6), using the stiff ODE numerical code of

HindmarshlI in combination with the Green's function code of Kramer, et

al. 12 More details on the specific calculations may be found in Ref. 13. 1
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Both Green's function surfaces exhibit pronounced negative response in the

vicinity of t - 10-2 sec. This latter time corresponds closely to the

maximum in the radical pool concentration profiles. Interestingly, the

coupling of che CO concentration with the H-atom concentration is -50%

greater than the coupling with OH, despite the fact that the latter species

is the primary oxidant. Moreover, both response surfaces, as a function of

time, are essentially identical in shape and therefore the physical impli-

cations from disturbing either the H concentration or the OH concentration

are the same. For example, the response surface of 6CO(t)/6JH(t') implies

that if the H-atom is perturbed at or after t' - 10-2 sec, no significant

changes are predicted in the CO concentration at any time. For perturba-

tions prior to t' - 10-2 sec, the CO concentration first exhibits no

response during the induction period, then rapidly achieves a negative peak

and decays to zero. It is clear that late in the reaction, the CO

concentration displays a "loss of memory" to early H or OH perturbations.

Even perturbations in the H202 and HCO concentrations which do not directly

consume carbon monoxide have similar response surfaces to those in Figure I

with the magnitude of responses nearly the same as 6CO(t)/6JOH(t'). This

type of self-similar behavior is a result of strong coupling amongst the

members of the radical pool and this issue will be discussed further in

section V.

A more detailed investigation of the coupling pathways can be ob-

tained by calculating the reduced Green's functions, for example, with OH

constrained to its nominal profile. In Figure 2 we present the t'-O cuts

of reduced Green's functions for the response of CO from which it is clear

that the strong dynamic coupling between CO and H (Figure 1) is eliminated

by freezing the OH profile at its nominal value (i.e., the strong response
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of Figure 1 is now reduced to a weak broad profile). It is therefore clear

that the carbon monoxide-hydrogen coupling results indirectly through the

hydroxyl radical. Furthermore, it becomes apparent that the direct

coupling by recombination reaction 51 plays a relatively insignificant

role. The importance of the OH radical is further underscored in Figure 2

by the drastically reduced magnitudes of the maxima of responses to pertur-

bations in the flux H02, H202 and 0, in comparison to their corresponding I
unconstrained curves (not shown here).

A similar illustration can also be given for the analogous reaction-

convection-diffusion problem. These calculations correspond to a laminar 3
premixed CO/H2/02 flame. Details of the calculations are presented else-

where.14 The calculations are based on the same reaction mechanism of

Table I using the numerical code of reference 9. The Green's function

coefficients for 6CO(x)/6JH(X') and 60(x)/6JOH(x') are shown in Figure 3. U
Here, the maximum response of CO to the perturbation of H-atom flux is

approximately 20 times larger than that due to the perturbation of the OH

flux. The flux perturbation in H and OH concentrations occurs along the

diagonal x-x' and consequently any variation in the CO concentration at

position x'>x exists due to upstream transport by diffusion with simul-

taneous chemical reaction. The maximum response of the CO in position x

occurs in the immediate vicinity of the flame front with a broad secondary

response both upstream and downstream in the flow. The magnitude of the

results of Figure 3 are consistent with the fact that H-atoms diffuse more

readily than OH radicals and strongly suggest that the role of transport in I
the CO+H2+02 chemistry may be much more important than believed so far.

14

The self-similar behavior of the OH and H response surfaces once again

indicates strong coupling between different variables and is easily 3
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understood in terms of the scaling and self similarity relations to be

discussed in Section V.

The freezing of the OH response again significantly affects the coup-

ling between the CO concentration and the H-atom concentration (Figure 4).

Here the reaucek Green s tunction SU(x)/6Jfi(x')I 6OH.0 shows thac the I"-

troduction of a small flux of H-atoms will inhibit the CO consumption,

whereas in the temporal problem, the overall reaction was still accelerated

but by a significantly reduced amount.
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IV. Green's Functions from Quantum Dynamics and Linear Kinetics

In the examples cited in the previous section, the fundamental and

reduced Green's functions were found to be valuable in the analysis of

intricate couplings resulting from the nonlinearity of the governing Eqs.

(11:.2,4). Thclr use can identify the extent cf coupling between various

species, as well as any mediators of these couplings. The information so

obtained can run counter to the expectations from the reaction network

structure alone. While the unforeseeable nature of the dynamic couplings

in chemical kinetics may be attributed to the nonlinear nature of the mass

action kinetics, even linear governing equations, such as in quantum

mechanics, can lead to dynamic couplings which cannot be anticipated by

knowledge of the Hamiltonian coupling alone. It is therefore useful to

explore the utility of the fundamental and reduced Green's functions in the 3
analysis of dynamic couplings in quantum phenomena as well as linear

kinetics.

A. Quantum Mechanics

We can study quantum dynamics as an evolution of probability ampli- I
tude or equivalently under the influence of some perturbation V acting

amongst the zeroth order eigenstates of a time independent Hamiltonian HO .

The nature and extent of this amplitude flow is determined by the time 3
evolution matrix U(t,t'), which is governed by the following equation of

motion
1 5

d-t(t, t' ) -  ()(tt ) (VAl)I

dt-h

where H(t) - Ho+V(t) is the time dependent Hamiltonian. The initial condi-

tion for Eq. (IV.l) is 3
U(t,t') - 1 (IV.2)
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and we have assumed that the eigenbasis fur H0 is used for representing the

operators. The Green's function G(t,r;g) satisfies

dt + ;H(t)IG(t,,) - 16(t-r )  (IV.3)

(T,.) i(IV.4)

A comparison of Eqs. (IV.3) and (IV.l) and their initial conditions shows

that the Green's function G(t,r) for t>r is simply the time evolution

operator U(t,r). A nonvanishing Gij - Uij implies dynamic coupling between

eigenstates i and J, and once again, we see the role of the Green's

function in reflecting dynamic couplings. Although the time evolution

operator is well known in quantum mechanics, its interpretation, in the

sense discussed in this paper, is unusual, particularly in purely temporal

analogues of Eqs. (11.4) and (11.5). Again Eq. (11.4), in this case, is

simply a statement of the Green's function acting as a propagator for the

evolution of an amplitude disturbance, while Eq. (11.5) shows that the

Green's function dictates the temporal behavior of any parameter

disturbance in the system Hamiltonian.

A quantity of general interest is the probability that application of

the perturbation V at some time t' will lead to transition from eigenstate

i to the eigenstate j of HO, where the measurements are done after an

infinitely long period (compared to the time scale of the internal motions

of the system). We therefore focus our interest on the long time average

<IG 1>_2 limr IGi(t,t,)2dt (IV.5)
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When the system is described by a time independent Hamiltonian, as in the

examples below, the Green's function is given by

G(t,t';a) - exp[I (t-t')H()] (IV.6)I

In terms of the eigenvectors I and the diagonal matrix of eigenvalues h of

H, we havea

HT - Th (IV.7)

G(t, t') - T exp[ th(t-t')]T (1V. 8)

G ij(tt) T Tk exp [-;h k(t-t')] Tjk (IV.9)

and the long time average becomesI

<lou 1 2 > T+ - lim 1 IITTi TkT M1J dt exp[ (t-to)( (h -h)]
ij~~ k i kjt k

- T kT~k ~ ji~m jkTm

k m k,'mU
hick - h m (IV.lO)

The computation of this average thus requires only the eigenvectors T and

eigenvalues h of H. We shall refer to the average <loijj 2>,-aO as the meanI

square Green's function or average transition probability. The limitations

that stem from the choice of an arbitrary basis to investigate dynamic

coupling of states are well known.16  This limitation does not, however,1
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vitiate the qualitative insight gained from examining the structure of the

Green's function especially when Ho and V play physically distinct roles.

The kinematic coupling is revealed by the structure of the

Hamiltonian matrix. As an example, we model the Hamiltonian of two coupled

oscillators in Figure 5 with eight and two accessible eigenstates,

respectively. In terms of a direct product (8x2) of eigenbases of the

uncoupled oscillators, we have a 16 dimensional representation made up of

two blocks corresponding to the two high frequency modes of one oscillator

being coupled to the eight eigenstates of the other. The state 18,1> in

which the first oscillator is in its highest frequency mode and the second

in the lower of its two modes is directly coupled to the state 11,2> in

which the first oscillator is in this lowest frequency mode and the second

in the higher of its two modes. The diagonal elements increase as integers

t izmic the energy levels of harmonic oscillators.

The long term dynamic coupling, as discerned from an examination of

<jij2>,, is portrayed by Fig. 6. The simple kinematic coupling

structure of Fig. 5 leads to dynamic couplings clearly unpreAictable from

the knowledge of the kinematic couplings alone.

Figure 7 represents a variation on the previous example in which both

of the oscillators now have four eigenstates. The sharply banded structure

associated with the mean square Green's function in Fig. 8 shows that,

while coupling is by no means limited to directly connected states by the

Hamiltonian, neither is dynamic coupling distributed equally among all of

the states. This surprising structure reinforces the important role of

Green's functions in the analysis of dynamic couplings.

In Figs. 9-12 we elucidate the use of the reduced Green's function

method using a pentadiagonal Hamiltonian with elements ranging over three
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orders of magnitude. The full Hamiltonian and the corresponding Green's

function are presented first in Figs. 9 and 10, respectively. The reduced

Green's functions for the same Hamiltonian in which the seventh state has 1
been eliminated is shown in Fig. 11 and that in which the ninth state has

been eliminated is portrayed by Fig. 12. Figure 11 shows that state 7 is a

critLical pathway for coupling between states 1-6 and 8-16, since its

elimination virtually uncouples the two blocks. In contrast, Fig. 11 1
reveals that state 9 contributes only in a minor fashion to the overall

dynamic coupling.

I
B. Linear Kinetics

The time evolution of species concentrations in linear temporal

kinetics is described by

dQ
- -MO O(t) -0 (IV.ll)
dt - -0

which is analogous to the governing Eqs. (IV.l) of quantum dynamics except

for the absence of -i/A. The presence of -i/h leads to a rich interference 3
between the probability amplitudes or Green's function elements for

different eigenstates during the evolution of quantum mechanical systems.

It is therefore useful to contrast the Green's functions from quantum 3
dynamics and linear kinetics described by the same Jacobian (11 - 11).

Conservation of matter implies that all the off-diagonal Plements of

1 be positive and the elements of any column of M must add up to zero. In

addition, the matrices used here are real symmetric (and hence Hermitian) I
to double as an acceptable Hamiltonian. Physically this latter symmetry

represents reactions at temperatures high enough to make the differences in

forward and reverse activation barriers insignificant. Due to the absence 1
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of -ih in the linear kinetics problem, the corresponding Green's function

does not lend itself to the time averaging used in the case of quantum

dynamical systems. We have instead studied them as a function of the time

interval (t-t').

In Fig. 13, we present the matrix which doubles as both M and H. In

linear kinetics, this matrix represents a cyclic reaction network where

each species is directly coupled to the next, and the last is coupled back

to the first. It is found that the behavior of the Green's function matrix

elements Gij depend only on the mode of coupling between the corresponding

species. Since no two species are separated by more than five intermed-

iaries, only six different types of plots are scan (Fig. 14). The entire

Green's function matrix is represented in Table II to underline the in-

terrelationships. It is seen that Gij, for smaller values of li-jl, have a

much larger magnitude for times (t-t')(12. On the other hand, the quantum

mechanical mean square Green's function driven by the same matrix H - M

(Fig. 15) reveals that the interference structure leads to essentially

uniform long-range coupling between all the eigenstates.
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V. Role of the Systematic Structure in the Green's Function Matrix

Mathematical modeling is often most useful when it can identify fea-

tures that allow for reductions in the complexity of the model without

compromising its validity. In the case of the model problem from linear

kinetics investigated in the previous section, the redundancy of the infor-

mation content of the whole Green's function matrix is demonstrated by the

reduction of the 144 (12x12) matrix elements to the 6 in Fig. 14 (and Table 3
II). In quantum dynamics, similar considerations have lead to the

formulation of scaling relations, 1 7 The dramatic redundancy of Green's

function matrix elements witnessed for the linear kinetics case, suggests 3
something similar for the nonlinear kinetics as well, and is easily

addressed by t::z=ining the gross structure of the whole Green's function

matrix.

An examination of these simplifying features is particularly I
important for nonlinear kinetics since the "lumping" of complex models to

obtain reduced pictures containing fewer parameters and variables is an

important quest in the modeling of real engineering level kinetics 3
problems. A knowledge of dynamic couplings between the various dependent

variables can be a useful guide in this area and may help quantify the

lumping of complex models which remains very much an art. Strong coupling

between a set of dependent variables would imply that their response to any

variation will be analogous and can be mimicked by retaining a single

representative variable (or perhaps a special superposition of the

dependent variables) from this set. In the previous sections, we examined I
the structure of the individual elements of the Green's function matrices

from different problems to elucidate their role in the characterization of

dynamic couplings between the dependent variables. In this section, we 3
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examine systematic structure of the whole Green's function matrix and as a

special example we again use the oxidation of carbon monoxide.

3 The Green's function coefficients of the pure temporal and the steady

state reaction-convection-diffusion problems, obtained by solving Eqs.

(111.6) and (111.7), respectively, for the reaction model described in

Table 1, form an llxll matrix (excluding the temperature). Some examples

of individual Green's function surfaces from these problems have been

offered previously and we have noted the evident similarities between the

surfaces corresponding to different elements of the Green's function

3 matrix. Specifically, Fig. 16 shows the surfaces for 6H202 (t)/6Jo(t') and

60H(t)/6JH(t') for the temporal problem of Section III. We note that the

two surfaces are nearly identical, although the magnitudes of their

3 responses are different. This feature permeates the whole matrix of

Green's function surfaces as evidenced in Fig. 17. In this figure, the

elements represented by the same symbol have similarly behaved response

surfaces and those with the. same, but shaded, symbols are of opposite sign.

An element without a symbol represents a response surface which could not

be closely matched with the surface of any other element.

It is apparent from the systematic structure of this matrix that it

I can be conveniently partitioned between the major species and the

intermediate species. This partitioning produces four non-square

submatrices, each with their own characteristics. The elements of the

g intermediate species - intermediate species submatrix (lower right hand

block) have similarly behaved response surfaces with the natural exception

of the diagonal elements (i.e., the diagonal and off diagonal elements

start out with distinctly different initial conditions). In contrast, the

I elements of the intermediate species-major species submatrix (lower left
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hand block) are observed to have similarly behaved response surfaces for a

given major species column. The element of the major species-intermediate

species submatrix (upper right hand block) are observed to have only some

elements with similarly behaved surfaces. Furthermore for this block, the

similarities between the response surfaces occur along rows corresponding

to major species. Finally, the elements of the major species - major

species submatrix (upper left hand block) are observed to have the least 3
similarity (blank spaces) among themselves. The present partitioning

implies that all intermediate species respond in the same fashion and on

the same time scale to variations in the flux of any intermediate species. 3
Moreover, the major species respond in the same way to variations in any of

the intermediate species but respond differently and in their own unique

way to perturbations in other major species.

The maximum magnitudes of the elements in the lower two block 1

atrices are -104 larger than those in the upper block matrices. However,

if the coefficients are logarithmically normalized (i.e., multiplied by

this significant difference is practically eliminated since the

major species concentrations are generally larger than the intermediate

species concentrations by -103 . Also, the Green's function matrix elements

involving molecular hydrogen react under some circumstances as if molecular 3
hydrogen were a major species (e.g., when its concentration is perturbed)

and at other times as an intermediate species.

The Green's function matrix for the steady premixed flame CO/H 2/02

oxidation problem, is pictorially shown in Fig. 18. Once again, I
similarities of the kind discussed for the pure temporal problem can be

observed between the various elements of the system. It is interesting to

compare the structure of this matrix with the matrix obtained from the 1
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temporal problem. While obvious similarities exist among the

intermediates, just as in the pure temporal case, some distinct differences

such as the separation of behavior of the heavier intermediates HO2 and

H202 from the lighter intermediates 0, H, OH and HCO, due to diffusion

effects, is readily apparent.

Pronounced similarities amongst elements of the Green's function

matrix of the kind found above have been observed in other problems as

well8 and have prompted the search for unifying relations to be discussed

below.18 The reason for such similarities is best explored in the context

of the steady laminar flame problem. In this case, the similarity of

various response surfaces to each other and to the temperature response

surfaces is associated with the dominant role of the temperature in com-

bustion problems, as suggested by its more extreme nonlinear role in com-

parison to the chemical species. The presence of a dominant variable,

i.e., temperature, leads to scaling and self similarity relations between

dependent variables and the topic has been treated in detail elsewhere.
18

Recent work has also shown that the presence of significant diffusion can

enhance the presence of scaling and self similarity.19 These relations can

explain the similar details of Green's function surfaces in the examples

cited above. Though in the case of pure temporal isothermal kinetics, no

single dominant variable is easily identified, an extension of the same

analysis can be brought to bear on the problem.18 A brief synopsis of

scaling and self similarity results is given below.

The scaling and self similarity relations ensue from the simple

ansatz of the presence of a single dominant variable (to be denoted by O1).

As a result of this assumption, we may separate Eq. (I.1) into two parts
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1 (0,9) - 0 (V.I)

L i(O,R) -0 ; - 2,3 .... N (V.2)

The dominant role of O ip manifest in the conjecture

0(x,p) 0 Fn[Ol(Xa)] (V.3)

that the x and a dependence of On(x,a) essentially arises as a function Fn

of the dependence occurring in the dominant controlling dependent variable

Ol(x,a).

Functional differentiation of (V.3), with respect to Jn'(x') leads to

f60_(x) I raF acIl~I I (V.4)
6J'(x') _ 0 ~l(63,(x)

and similarly, differentiating Eq. (V.3) with respect to x results in

r80, faFnl1
lax J 8 J aJ

Eliminating the derivative aFn/aOl from Eqs. (V.4) and (V.5) we obtain the

scaling relation

60 n(x) 60, (x)] t8aJ n -lro
T 63 ,x (VA6)

This equation implies that all the elements of the Green's function matrix

may be deduced from the first column of that matrix in conjunction with a

knowledge of the coordinate gradients of the corresponding dependent

variables. The scaling implied by Eq. (V.6) corresponds to a reduction of

the NxN dimensional Green's function matrix down to knowledge of a single

vector of dimension N. An immediate consequence of Eq. (V.6) is the

relations U
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(sO(x)/SJk(x')) (601(x)/ 6Jk(x'))

( 6 On(X)/ 6Jk,(x')) (601(x)/SJk,(x')) (V.7a)

(6 On(X)/6Jk(x')) (On(x)x)) 
(V.7b)

(60n,(X)/6Jk(x')) (0n,(X)/ax))

The simplification implied by these results is quite dramatic and their

validity is easily tested. For example, a simple consequence is that the

Green's function elements of the nlth dependent variable will change sign as

a function of x whenever an extrema (8On/ax) - 0 exists (Fig. 19a has this

behavior upon examination of aH(x)/ax (not shown here)). In addition,

manipulation of Eq. (V.7b) will show that it has the same structure as Eq.

(V.6), excepL now the domintatr role is replaced by On , as an arbitrary

member of the strongly coupled set of dependent variables. These results

suggest that the choice of 01 is dominant in Eq. (V.3), may be relaxed to

any member of the strongly coupled set of dependent variables. This

statement is also supported by numerical evidence validating Eq.

(V.7).18 ,19

In steady state flame problems, the temperature is a monotonically

increasing function of x, with positive slope, and the monitonically

decreasing reactant c ;entration will have a negative slope. As a

consequence, with the identification of temperature as the dominant

variable, we can understand that the Green's function surfaces for the

reactants are basically the negative of the corresponding Green's functions

for the temperature as seen from comparing Figs. 19b and 19c. Since, due

to the conservation of mass, a decrease in CO would always lead to an

increase in CO2 concentration (the HCO concentration is inconsequential),

it also explains why the columns corresponding to CO and CO2 are the

Page 26



obverse of each other (see Fig. 18). The structure of the Green's function

surfaces for intermediates may be similarly understood. The intermediate

concentration, which is initially zero at the inlet, rises to a maximum in

the flame zone and then decreases. As a consequence, the intermediate

Green's function matrices should look similar to the temperature Green's

function but change sign upon passage through the flame as exemplified by

Fig. 19a. The similarities between the surfaces 6CO(x)/6JH(X') and 3
6CO(x)/6JOH(x') (Fig. 3) is easily explained by Eq. (V.7a) and the

preceding discussion regarding the response functions for the

intermediates. 3
While the role of the scaling relation Eq. (V.6) as an organizing

principle is made plain by the examples cited above, the use of Eq. (V.6)

in conjunction with Eq. (111.7) leads to further simplifications. The

substitution of Eq. (V.6) into (111.7) ultimately leads to the following I
result1 8 ,19

60 1 (x) (x) fn' (x) x>x (V.8)

63 n,(x') I -(,)XX
6n,,) lx fn,(x') x<x' 1v8

+n

where A(x) and fjj, are system characteristic functions. The validity of

this construct is borne out by Fig. 4, where the requisite discontinuity 3
f;,(x') o fn,(x') at x-x' and the factorization of the Green's function

according o Eq. (V.8) is apparent. This feature persists in other

surfaces as well with different levels of smoothness in the jump across I
x-x'.

Finally, substitution of Eq. (V.8) into Eq. (V.6) leads to the self

similarity relation

P
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-A (x) .J (V.9)f X(x') x<x
AJ (x,) An(X) -l (V.9)

ann

We note that the Eqs. (V.6) and (V.10) imply that the N2 Green's function

surfaces are completely characterized by the N dimensional vector of sur-

faces [6O1(x)/6Jn,(x')], which themselves are a simple product of functions

indicated in Eq. (V.8). The physical significance of Eq. (V.9) is evident

when we recall that these response functions are measurable in the

laboratory. In particular, taking n-l, the function A(x) may be determined

by disturbing the flux of any dependent variable and the functions f4,(x')

could be determined by disturbing the flux of each of the dependent

variables in turn. The scaling and self similarity relations, therefore,

offer insight into the structure of response surfaces and make plain the

nature and extent of dynamic couplings. The general conditions for the

validity of the scaling and self similarity relations still needs to be

firmly established. However, computational evidence suggests that

relations become increasingly valid in the presence of strong dynamical

coupling, regardless of whether its origin is through kinetics, diffusion

or thermal effects.

VI. Concluding Remarks

We have attempted to illustrate the role of Green's functions in

physically characterizing the dynamic couplings in diverse

chemical/physical phenomena. The nonlinearity in chemical kinetics and the
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interference structure in quantum dynamics lead to effects that transcend

the apparent network structure between the dependent variables of the

underlying models. The elements of the Green's function matrix help elicit

the nature and extent of dynamic couplings between the dependent variables

of a model system. While the coupling or its absence between any two

dependent variables is revealed by the corresponding element of the Green's

function matrix, the possible role of other dependent variables in 3
mediating this coupling may only be ascertained by freezing appropriate

variables selectively, and using the concept of reduced Green's functions.

In this paper, we have illustrated the intervretive utility of Green's 3
functions by offering examples of their use in pure temporal kinetics,

reacting-diffusing-convecting steady state kinetics, and from some model

problems in quantum dynamics.

The possibility of reducing the complexity of any mathematical model I
can depend on the ability to identify a set of dependent variables with

similar response to various system parameters. Such an identification may

make possible the use of a reduced number or a single representative member 3
from this set for effective modeling of the system behavior. A global

characterization of the Green's function matrix, exemplified by a block

structure or reduced rank, suggests such a possibility. At least in the

case of some kinetics problems, the presence of scaling and self similarity

relations directly implies a reduced rank for the Green's function matrix.

The ease with which Green's functions yield insights into dynamic system

couplings in diverse chemical/physical systems augurs well for their wider I
application in the future.

P
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I
Figure Captions

1. Response surface for the Green's function elements (a)

6CO(t)/6JH(t') and (b) 6CO(t)/6JOH(t') for the pure temporal system

of Table I. The peak response of Fig. la is approximately twice

that of Fig. lb.

2. Cuts (at t'-O) of the reduced Green's functions 6CO(t)/6Jx(t')16OH-O I
(x-H, 0, etc.) for the pure temporal problem where the OH species

have been frozen. These responses are dramatically smaller (by 4-5

orders of magnitude) than those with unconstrained OH thus revealing 3
the critical role of OH in the oxidation of CO.

3. The response surface for a premixed steady CO/H2/02 laminar flame.

a) 6CO(x)/6JH(X') and b) 6CO(x)/6JOH(x'). The maximum of the

response to the perturbation in the flux of H atoms is about 20

times more than that due to the perturbation in the OH flux. This

is easily understood due to the greater mobility of the lighter

species H. 3
4. The response surface for the reduced Green's function

6CO(x)/6JH(x')I60H_ 0 of the laminar flame problem. Not only is the

magnitude of the response reduced by a factor of twenty in 3
comparison with that in Fig. 3, the freezing of OH response also

leads to a reversal in the role of H atoms. A small added flux of H

atoms is seen now to inhibit the consumption of CO.

5. Model Hamiltonian for two coupled oscillators with two and eight I
eigenstates, respectively. The nondiagonal elements determine the

initial kinematic coupling structure between the eigenstates of the

unperturbed Hamiltonian. The heavy bold lines through the matrix 3
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separate the two blocks of eight states involving, respectively,

first and second eigenstates of the second oscillator. Shading

scale to the right of the figure corresponds to the numerical

magnitude of the matrix elements in the Hamiltonian.

6. The long term mean square average of the Green's function

corresponding to the Hamiltonian in Figure 5. The shading scale to

the right of the figure corresponds to the magnitude of the matrix

elements. The simple nearest neighbor coupling structure of the

Hamiltonian leads to a long time behavior where almost all the

states are strongly coupled to each other.

7. A variation on the system represented in Fig. 5. Here, both

oscillators have four states, and the groupings are denoted by the

bold lines. The shading scale of Fig. 5 applies here.

8. The long time average of the Green's function for the Hamiltonian in

Fig. 7. The shading scale of Fig. 6 applies here. The sharply

banded structure shows that the energy distribution of dynamic

coupling is neither limited to the originally coupled states alone

nor is it entirely random.

9. Matrix representing a pentadiagonal Hamiltonian. The shading scale

of Fig. 5 applies here. The differences in the magnitude of the

nondiagonal elements mimic a varied kinematic coupling structure.

10. The long time mean square average of the Green's function for the

Hamiltonian in Fig. 9. The shading scale of Fig. 6 applies here.

The marked difference between the structure of the Hamiltonian and

the long time coupling between the states underscores the dynamical

content of the Green's functions.
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11. The long time average of the reduced Green's function for the

Hamiltonian in Fig. 9, where the 7 th state has been eliminated. The

shading scale of Fig. 6 applies here. The block diagonal nature of 3
the reduced Green's function matrix reveals the critical role of

state 7 as a gateway for coupling between states 1-6 and 8-16.

12. The long time average of the reduced Green's function for the

Hamiltonian in Fig. 9 where the 9th eigenstate has been eliminated.

The shading scale of Fig. 6 applies here. The elimination of this

state increases the transition probability between states 11 and 12,

revealing its role as a bottleneck for dyuiamic coupling between 3
these two states. Aside from this change, the state 9 has a much

less critical role than thaL of state 7 which is apparent from a

comparison of Figs. 10, 11 and 13. 3
13. The matrix which doubles as both H and d. The conservation of

matter in kinetics necessitates that the diagonal element in any

column equal the negative of the sum of the remaining positive off

diagonal elements of that column. The real symmetric nature of the I
matrix permits its use to represent a Hamiltonian operator H as

well.

14. Green's function matrix elements from the linear kinetics problem i

with M represented in Fig. 13. The linearity of the system leads to

an entirely predictable behavior with the magnitude of response

being determined by the closeness of coupling li-Jl. The curves 3
a-,f correspond to particular elements shown in Table II.

15. The long time mean square average quantum mechanics Green's function

for the Hamiltonian in Fig. 13. The shading scale of Fig. 6 applies

here. Unlike linear kinetics with the same matrix M - H in Fig. 14, 3
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the interference structure in quantum mechanics leads to nearly

uniform coupling of all states.

16. Comparison of the Green's function coefficient surfaces for the

elements, (a) 6H202(t)/Jo(t') and (b) 6OH(t)/6JH(t') from the

temporal, isothermal wet oxidation of CO. The maximum and minimum

3values for H202(t)/6Jo(t') are 798 and -81, respectively. The

corresponding values for 60H(t)/6JH(t') are 133 and -17.

17. Schematic diagram of the wet CO oxidation Green's functions

6-i(t)/6Jj(t') from the temporal problem. Elements of similar shape

have similarly behaved Green's function surfaces as a function of t

and t'. Those with the same shape, but shaded in, are of opposite

sign. Blank spaces indicate a response surface which could not be

I closely matched with another.

18. Schematic diagram of the steady CO/H 2/02 premixed flame Green's

functions, S-i(x)/SJj(x'). The conventions of Fig. 17 apply.

19. The response surfaces from the premixed CO/H2/02 laminar flame

problem: (a) SH(x)/6Jo(x'), (b) 6CO(x)/6Jo(x') and

(c) 6T(x)/6Jo(x'). These figures with their similar structures

illustrate the scaling and self similarity relations in Section V.

P
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Table I. CO/H2 /02 Kinetic Mechanism

No. Reaction Al n E 12 UF3

1,23 HCO + H - CO + H2  2.00(14)4  0.0 0.0 f 2

3,4 HCO + OH - CO + H20 1.00(14) 0.0 0.0 f 3.5 U
5,6 0 + HCO - CO + OH 3.02(13) 0.0 0.0 f 2

7,8 HCO + 02 - CO + HO2  3.01(12) 0.0 0.0 f 1.5

9,10 CO + HO2 - CO2 + OH 1.50(14) 0.0 2.36(4) f 2

11,12 CO + OH - H + CO2  4.46(6) 1.5 -7.40(2) f 1.5 1
13,14 CO2 + 0 - CO + 02 2.53(12) 0.0 4.77(4) b 3

15,16 H + 02 - 0 + OH 3.73(17) -1.0 1.75(4) f 2

17,18 H2 + 0 - H + OH 1.80(10) 1.0 8.90(3) f 2 3
19,20 0 + H20 - OH + OH 4.58(9) 1.3 1.71(4) f 2.5

21,22 H + H20 - OH + H2  1.08(9) 1.3 3.65(3) b 2

23,24 H2 02 + OH - H20 + HO2  7.00(12) 0.0 1.43(3) f 2

25,26 HO2 + 0 - 02 + OH 1.81(13) 0.0 -3.97(2) f 2

27,28 H + HO2 - OH + OH 1.69(14) 0.0 8.74(2) f 1.5

29,30 H + HO2 - H2 + 02 6.63(13) 0.0 2.13(3) f 2

31,32 OH + HO2 - H20 + 02 1.45(16) -1.0 0.0 f 2.5 i
33,34 H202 + 02 - HO2 + HO2  1.00(13) 0.0 1.00(3) b 3

35,36 HO2 + H2 - H202 + H 1.70(12) 0.0 3.75(3) b 2

37,38 02 + M - 0 + 0 + M 6.17(15) -0.5 0.0 b 3 3
39,40 H2 + M - H + H + M 2.20(14) 0.0 9.60(4) f 2

41,42 OH + M - 0 + H + M 1.00(16) 0.0 0.0 b 30

43,44 H2 02 + M - OH + OH + M 1.20(17) 0.0 4.55(4) f 2

U
45,46 H20 + M - H + OH + M 2.20(16) 0.0 1.05(5) f 2

47,48 HO2 + M - H + 02 + M 1.65(15) 0.0 -1.00(3) b 3

I
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U 49,50 Co2 + M - Co + 0 + H 5.90(15) 0.0 4.10(3) b 4

51,52 HCO + H - H + CO + M 6.90(14) 0.0 7.00(3) b 1.5

53,54 H + H202 - H20 + OH 1.00(13) 0.0 3.59(3) f 3

[M] - [N2] + [021 + 16[H20] + 2.5[H 2 ] + 3.8[C02] + 1.9[CO] + [H0 2] + [H202] + [H] +

[0] + [OH + [HCO] + 0.87[Ar]

1 Units are cm-mole-sec-cal, k - ATnexp(-E/RT)

2 1 indicates direction of reaction for which rate constant data was used.

References for the rate data may be found in Refs. 10 and 13.

3 3 Number associated with forward rate constant, number associated with reverse rate

constant.

4 Numbers in parentheses denote powers of ten.

I

I

I
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Table II: A tabulation of the Green's function matrix elements for the 3
linear kinetics system described in Section IV and Fig. 14. Due

to the symmetric nature of the matrix, only the lower triangle

portion is displayed. Elements represented by the same letter

have an identical response profile corresponding to the curves

in Fig. 24.

I
1 2 3 4 5 6 7 8 9 10 11 12

1 a

2 b a

3 c b a

4 d c b a

5 e d b b a

6 f e d c b a

7 f f e d c b a 3
8 f f f e d c b a

9 e f f f e d c b a

10 d e f f f e d c b a

11 c d e f f f e d c b a

12 b c d e f f f e d c b a

U

I

I
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ABSTRACT

The direct and very efficient Newton method for obtaining sensitivities

of two-point boundary value problems is utilized for detailed exploration of

a reacting-diffusing CO+H2+02 steady-ntate premixed laminar flame.

Sensitivity coefficients and Green's functions calculated for this system

offer exhaustive characterization and new insights into the role of diffusion

I and exothermicity in carbon monoxide oxidation kinetics. In particular, the

reactions of the hydroperoxy radical with hydrogen, oxygen and hydroxyl

radicals are found to be extremely important at all temperatures in the fuel

lean (40 torr) flame studied here. The diffusive mixing of chemical species

from the low and the high temperature portions of the flame and the large

heats of reaction associated with the hydroperoxy radicals are found to be

responsible for the increased importance of these reactions.

I

I

I

I
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I. INTRODUCTION

The wet oxidation of carbon monoxide involves elementary steps common to

the high temperature flame oxidation of all hydrocarbons. As such, the quest

for a comprehensive mechanism for this system is an ongoing concern of

fundamental importance to combustion chemistry and has been studied

extensively in combustion kinetics1 . Recently, Yetter et a12 have put forth

a comp-ehensive mechanism for this system and have examined its validity over

a wide range of experimental conditions in the absence of mass and energy

transfer. In addition, they performed a thorough sensitivity analysis of its

temporal kinetics 3 . In another paper4 , this same system was studied using a

one-step "global" reaction. In this latter work, the overall reaction was

represented by the single step, CO + 1/2 02-C0 2 , with the reaction rate

defined as d[COj/dt - - kov[COI[H 20]
1I/2[0211 /4. From results in which the

overall rate constant, kov, was deduced from detailed calculations using the

above elementary reaction mechanism, it was observed that the behavior of kov I
as a function of temperature was significantly different for premixed flames

versus various temporal problems. Although one might anticipate that the wet

carbon monoxide oxidation reaction may be strongly influenced by transport

processes, no detailed study exists which explicitly demonstrates and

explains the interplay between chemical kinetics and diffusion phenomena.

Such an investigation is the principal concern of the present paper.

Validation of a reaction mechanism involves a detailed analysis of the

effect of the changes in underlying input parameters (e.g., reaction rate

constants, reactant flow rates, diffusion coefficients, etc.) on the

experimental outputs (e.g., the concentration profiles). A systematic probe

of the relationship between the output information obtained from a model and

the input parameters (including the initial and boundary values) defining the

I
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model constitutes the basic domain of sensitivity analysis. In recent years,

sensitivity analysis has emerged as a potent tool for numerical investigation

and validation of physico-mathematical models 5 . The major obstacle in the

systematic calculation of sensitivity information has been the amount of

additional computation required in solving the sensitivity equations which

can easily exceed the computational effort reqared in obtaining the model

results alone. This can be prohibitively expensive for models consisting of

a large system of differential equations.

Recently, we have implemented a direct and very efficient approach for

obtaining sensitivities of two-point boundary value problems using Newton's

method6 . Application of this procedure in the present paper to a reacting-

diffusing CO+H 2+02 steady-state premixed laminar flame offers fresh insights

regarding the role of diffusion in combustion chemistry. In Section II we

present a brief description of the method for solving the differential

equations governing the reacting-diffusing system in a steady-state flame and

the calculations of the corresponding sensitivity coefficients. The species

and their sensitivity profiles are analyzed in Sections III and IV,

respectively. The premixed flame results are then compared to the results

from pure temporal kinetics in Section V. In particular, diffusion and

reaction exothermicity on the underlying kinetics is examined in detail,

where we identify the conditions that offer a formal similarity between

equations gGverning pure temporal kinetics and reacting-flowing steady-state

kinetics. Finally, in Section VI concluding remarks summarize our major

findings from this investigation.
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II. Sensitivity Analysis of Reacting-Flowing Systems

The wet oxidation of carbon monoxide in a steady, one-dimensional,

premixed laminar flame -is modelled as a two-point boundary value problem.

The formulation of the problem we consider closely follows the one originally

proposed by Hirschfelder and Curtiss 7 . Upon neglecting viscous effects, body U
forces, radiative heat transfer and the diffusion of heat due to

concentration gradients, the equations governing the structure of a steady

one-dimensional isobaric flame are I

- pu -constant (2.1)

dYk d
dx -" (PYkVk) + k k - 1,2 ..... K, (2.2)

K K

dT "1 d A dT i PYkVkcp dT " I khk Wk
dx c dx . x c Kk dx _c1

k-l k-l (

(2.3)

P R (2.4)S-RT

In these equations x denotes the independent spatial coordinate fixed to the 3
flame; M, the mass flow rate; T, the temperature; Yk, the mass fraction of

the k-th species; p, the pressure; u, the velocity of the fluid mixture; p,

the mass density; Wk, the molecular weight of the k-th species; W, the mean 3
molecular weight of the mixture; R, the universal gas constant; A, the

thermal conductivity of the mixture: cp, the constant pressure heat capacity

of the mixture; c the constant pressure heat capacity of the k-th
Pk'I

species; Zk, the molar-rate of production of the k-th species per unit

I
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volume; hk, the specific enthalpy of the k-th species; and Vk, the diffusion

velocity of the k-th species. The form of the chemical production rates and

the diffusion velocities can be found in references 8 and 9.

The problem is posed on the infinite interval -- < x < with the

boundary conditions at x - -w given by

T(--) -T (2.5)

Yk( Y) k k - 1,2,... ,K, (2.6)
u

and at x - by

dI (w) - (2.7dx 0 (2.7)
dx

dYk() - 0, k - 1,2,... ,K, (2.8)

dx

where the Ykuare the specified mass fractions of the reactants and Tu is the

temperature of the unreacted gas. We point out that instead of solving the

governing equations on the infinite domain, we pose the problem on the finite

interval 0sx-sL where the length of the interval must be large enough to

insure that the boundary conditions are properly satisfied 0 . The new

boundary conditions at x - 0 are given by
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T(O) - Tu, (2.9) 1
E k(O) - Yk u , k - 1,2,...,K, (2.10)

and at x - L by

dT (L) - 0, (2.11)
dx

dYk(L) - 0, k - 1,2,. ..,K, (2.12)

dx I

where the mass flux of the k-th species is defined as

Ck " Yk + PYkVk, k - 1,2,...,K. (2.13)

A

We point out that in an adiabatic problem, the mass flow rate M is not

known; it is an eigenvalue to be determined. Calculation of the flow rate U
proceeds by introducing the trivial differential equation

A - 0, (2.14)
dx

and an additional boundary condition to the system in (2.1-2.13). The

particular choice of the extra boundary condition is somewhat arbitrary but,

it must be chosen, however, to insure that the spatial gradients of both the

temperature and the mass fractions are vanishingly small at x-0. In keeping

with the dominant role of the temperature, we have chosen to fix the

temperature at an interior grid point such that I
T(xf) -Tf, (2.15)

I
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where xf is a specified spatial coordinate interior to the domain and Tf is a

specified temperature. Values of xf and Tf should be chosen to guarantee a

nearly zero temperature gradient at the unreacted boundary.

Solution of the governing equations proceeds with an alaptive nonlinear

boundary value method on an initial mesh containing m grid points. Upon

discretization of the differential operators in (2.1-2.15), we obtain a

system of nonlinear algebraic equations

F(U,a) - 0, (2.16)

where U represents the vector of N dependent variables, and the vector a of

length M represents the system parameters such as activation energies, pre-

exponential factors and other quantities that enter the differential

equations. Solution of the system in (2.16) by Newton's method has been

discussed in detail elsewhere and we refer the reader to the appropriate

references (see, e.g., references 10 and 11).

In keeping with our goal of ascertaining the role and importance of

various system parameters, the quantities of natural interest are the first-

order sensitivity coefficients

siJ - (x,g) (2.17)

which provide a direct measure of how the J-th parameter controls the

behavior of the i-th dependent variable at point x. The appropriate

equations for these quantities can be derived by differentiating (2.16) with

respect to aj. We have
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I
d(F(UJ,a)) - HE U + F - 0, j - 1,2,...,.M. (2.18)

cia aua 8adj .u j aj

Recalling that the Jacobian matrix is given by J - OF/aU, we have

J aU - F , j - 1,2,...,.M. (2.19)

aj Bj

Although equation (2.18) can be solved at any level of the Newton iteration 3
and at any level of grid refinement, we solve it on the finest grid with the

last Jacobian formed. It is only at this stage of the calculation that the

numerical solution has been resolved with sufficient accuracy to represent

the true solution.

We point out that although the original boundary value problem is

nonlinear, the sensitivity equations in (2.19) are linear. In principle, we

can apply the Green's function method to obtain a solution to (2.19). While I
we do not advocate such a procedure, the Green's function does, however,

contain valuable information on system sensitivity. The Green's function

satisfies the equation

JG - -A (2.20)

wb-re the diagonal matrix A can be written in terms of N x N diagonal blocks

Sj, j - 1,2,...,m. To insure that the Green's function vanishes at the

boundaries, the diagonal blocks corresponding to j - 1 and j - m are set

identically to zero. The nonzero diagonal entries of the remaining blocks j 1

- 2,3,...,m-1 are given by

I
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(61)kk - 2 , k - 1,2,...,N, (2.21)
h +hj+ 1

where hj, j - 2,3 .... m is the j-th mesh interval. With the definition in

(2.21) we can obtain G by solving the linear system JG - -A. Assuming the

Jacobian has been factored, formation of G is accomplished by performing Nm

back substitutions with a different column of A as the right-hand side.

The elements of C have the response function interpretation
1 2

Gij(x,x') - 6Yi(x) (2.22)
6JW(x')

i.e., the elements Gij(xx') correspond to the response of the i-th dependent

variable at point x to a disturbance of the flux Jj(x') of the dependent

variable j at point x'. The solution to Eq. (2.19) may now be expressed in

terms of the Green's function

L

Sij(x) - dx' G (x,x') gl. (x') (2.23)

X 0

The fundamental role of the Green's function is self-evident from its

interpretation in Eq. (2.22) and its role in Eq. (2.23). In particular, from

Eq. (2.23) all the system sensitivities are expressed in terms of a

convolution of the Green's function with the explicit parametric derivatives

of the differential equations.

A detailed account of the numerical procedure and error analysis for

direct calculation of the system sensitivities and Green's functions using an

aAaptivc finiLe diffkrence te..hnique with Newton's method has been discussed



third draft -- 1-29-91

-11 -

elsewhere6 . This is the method we have used for obtaining the sensitivity I
coefficients and Green's functions for the CO+H2+02 system. The physical

content and significance of this latter information is analyzed in the

following sections.

III. The CO+H 2+02 System

The present attalysi is performed on a laminar, premixed, fuel-lean,

CO+H2+02 flame. This particular flame has been experimentally studied using

a 5 cm cylindrical burner by Vandooren, Peters, and van Tiggelen1 3 and it has

been modelled numerically by Cherian et a114 . The composition of the unburnt 3
gas (i.e., the upstream conditions) in mole fractions was XCO - 0.094, XH2 =

0.114, and X02 - 0.792. The temperature and pressure of the unburnt gas were

273 K and 40 Torr, respectively.

The calculated adiabatic temperature and species mole fraction profiles I
of the reactants, intermediates, and products are shown in Figure 1. These

calculations were based on a comprehensive reaction mechanism 2 ,3 consisting

of 27 reversible reactions and 11 chemical species (see Table 1). The 3
mechanism differs from the previous numerical work mainly in the presence of

H202 and its associated reactions. The dynamic role of hydrogen peroxide

will be discussed later along with the analysis of the sensitivity gradients. 3
The results for the species concentrations are in good agreement with

the experimental data and the earlier numerical results although the present

flame speed is approximately 25% larger than the experimental value. As

discussed by Cherian et a114 , the experimental data were taken under .

cr4.Mt1ons ox. non-negligible heat losses to the burner surface. These energy

losses were not incorporated into the present calculations (due to lack of

I
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experimental information on the rate of heat abstraction and the temperature

of the burner) nor were chemical losses included such as catalytic

recombination of radicals at the burner surface. Moreover, the sensitivity

analysis results presented in the next seccion show tLat small uncertainties

in many of the model input parameters may contribute to the flame speed

difference. The present model is run under well-defined conditions that

allow us to investigate the role of the various physical parameters on the

structure of a CO+H2+02 premixed flame, and, in particular, to study the

effects of molecular diffusion and temperature on the controlling chemistry.

IV. Analysis of Linear Sensitivity Gradients

The normalized linear gradients of the CO concentration profile with

respect to various reaction rate constants and diffusion coefficients are

shown in Figure 2. The sensitivity of CO with respect to the system

pressure, the mixture thermal conductivity and the total mass flow rate are

shown in Figure 3. From these figures, a ranking of the relative importance

of these variables on the CO concentration may be obtained. The importance

of the variables was also found to be the same with regard to the flame speed

but naturally of opposite sign (see Table 2) due to the inverse relation of

the flame speed and the CO concentration under the present running

conditions. These flame speed sensitivities were obtained from a "derived"

sensitivity analysis6 .

Underlying microscopic processes to which the CO concentration profile

and also the flame speed are most sensitive are the elementary reaction of CO

with the hydroxyl radicai (i.e., reacLion i. iLii iue I which is the rate

controlling step of the overall reaction rate, RR) and to the mixture thermal

conductivity (the most sensitive parameter of the molecular transport
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processes). The results agree with traditional phenomenological analyses 1 5  m

which yield

u - A(RR) (4.1)

I
where A - (A/pCp) is the thermal diffusivity of the mixture. This

relationship is manifested in that

aln u - aIn u (4.2)
aln A aln k 1

(as also seen in the CO sensitivity profiles of Figs. (2a) and (3)). The

sensitivity gradients of Figure 2 also show the inhibiting effects of H2 and 3
CO diffusion, and the accelerating effects of H,O and OH diffusion. This

behavior is also consistent with the role played by the species in the flame.

However, it is interesting to note that H2 diffusion is nearly as important

as H-atom diffusion and that CO diffusion is as important as OH-radical

diffusion.

The relative importance of other reactions is also easily recognized

from Figure 2. It may be seen that the branching reaction H + 02 (i.e., rate m

constants 15 and 16) is nearly microscopically balanced which is reflected in

the relation alnCO/alnkl5  - alnCO/alnkl6 . The net sensitivity of H2 + 0 =

H+OH is in the forward direction and the net sensitivity oZ 0 + H20 - 20H is

in the reverse. The two propagating reactions CO + OH - H+C0 2 and H2 + OH -

H+HO Pach promote the overall reaction while the recombination steps H + 02

+ M - HO?+M. H + 'H ! M t 11, -M Inhibit Lh. Z'...tinr TbpS lesults ;r'k .

findings on the same purely temporal analogous problem 2 ,3 with one exception:

in the temporal problems studied, H2 + OH - H+H20 was generally found to

I
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inhibit (or slow) the CO reaction, whereas here it is seen to promote the

reaction.

An interesting outcome from the present set of calculations is the

evident relative importance of the radical-radical reactions involving H02

(e.g., H + H02 , OH + H02). For example, observe that the CO concentration is

more sensitive to the reaction H + HO2 - OH + OH than to U + 02 - OH + 0 at

all temperatures (i.e., even in the post-flame region). One explanation for

this occurrence results from the near equilibration of H + 02 - OH + 0. As a

consequence, few H-atoms are removed from the system by this reaction. This

makes the termolecular reaction H + 02 + M - HO2 + M (which like other

recombination reactions has a rate with a negative temperature dependence)

competitive for H-atoms at high temperatures and therefore allows for further

H02 reactions. These reactions receive further attention in the next

section.

Also noticeable in the sensitivity gradients is a remarkable similarity

between various profiles irrespective of the parameter being perturbed,

except in the case of alnCO/alnkl2 where there is a loss of similarity in the

post-flame region (see Figure 2c). When strong coupling exists between

several dependent variables and a single variable (such as the temperature)

dominates the behavior of the others, the sensitivity gradients may be

scaled 16 in the following fashion

Sayn(x) __ (4.3)

8a j I Ia4 I -x J(8lxJ

For example, the gradients for the CO concentration all pass through zero at

a position of x - 0.55 cm. The change in sign of the sensitivity gradients
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here is directly correlated to the change in sign of the CO slope, dCO/dx, at

that point. The (slight) positive growth in the CO concentration prior to

significant reaction results from preferential diffusion of the lighter

molecular and aL'.czic weight species. This is evident in Figure 4 which shows

the atomic hydrogen to atomic carbon ratio (H/C) as a function of flame I
position. As can be seen from the figure, the overall mixture is deficient

of hydrogen containing species where the CO concentration peaks and slightly

thereafter. However, more importantly this relationship (Eq. 4.3) aids the 3
analysis of the CO + H2 + 02 flame in that the ranking of reactions for one

dependent variable profile are sufficient to determine the overall importance

of reactions in the entire mechanism. 3
An increase in pressure is observed to decrease significantly the CO

concentration (Figure 3) or equivalently to increase the flame speed.

Increasing the total mass flow rate decelerates the reaction and eventually

leads to unstable conditions. U
The role of hydrogen peroxide in the flame structure is illustrated by

considering the effects of its elementary steps on the other species of the

system. Figure 5a shows such gradients of the CO concentration and Figure 5b 3
shows the gradients of the O-atom concentration. The major steps producing

hydrogen peroxide are hydroxyl radical recombination, OH + OH + M - H202 + M,

and HO2 + HO2 - H202 + H2 . Clearly, the CO concentration is not altered

noticeably, but significant changes are observed in the O-atom concentration

(as well as the other intermediates) in the low temperature regime of the

flame. Even throughout the rest of the flame, the presence of H202 and its

associated reactions have some influence. At higher pressure, H202 would be

expected to play a more important role due to the increase in HO2

concentrations as a result of the reaction H + 02 + M - HO2 + M dominating H

I
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+ 02 OH + 0 and hence, its inclusion is recommended for all comprehensive

mechanisms.

V. Comparison of Flame Chemistry with Dilute Temporal Chemistry

Comparison of the dominant elementary steps described in the last

section with those steps generally found important in temporal systems
2

reveals some dramatic differences in the underlying mechanism of the two

systems. Using the same reaction mechanism, shock tube and flow reactor data

were modelled in a previous paper2 and through a similar sensitivity

analysis, the controlling reactions on the CO concentration were

investigated. In these latter models, diffusive processes are assumed small

compared to the remaining terms in Eq. (2.2). In addition, the chemistry is

performed under nearly isothermal conditions. The simplest mathematical

equations governing these two experimental systems are

d &k kW(5.1)

dt

and

dYk - W k  (5.2)
dx

for the shock tube and flow reactor, respectively. Here, :k is the identical

reaction matrix found in Eq. (2.2). When u is constant, the analysis of both

systems is identical since u dYk/dx may be equated to dYk/dt.

One difference with the pure temporal chemistry mentioned earlier

manifests itself in the role of radical-radical reactions of HO2 with H, 0,

and OH. In the temporal systems, these reactions were usually of secondary

importance and never exceeded the importance of the principal reactions of
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the hydrogen-oxygen mechanism such as H + 02 - OH + 0, H2 + OH - H20 + H, 0 + i

H 20 - OH + OH, and H + 02 + M - H02 + M.

The point to be emphasized here is that a change in the important steps

of the reaction mechanism is apparent between temporal and flame problems.

In the two sections to follow, two specific aspects of the flame problem not i

encountered in the temporal problems are considered as responsible for these

significant differences. First, the role of diffusion and second, the role

of mixture exothermicity on the chemistry are investigated. 3

Va. Diffusion Effects

The role of Oiffusion can be examined from several different

perspectives. From the system Green's function, it is evident that

significant diffusion is present which may affect the chemistry. This is

illustrated in Figure 6 which shows the response surface corresponding to the

Green's function matrix element 6C02 (x)/6JH2(x'). This figure reveals the 3
response of the C02 concentration at position x in the profile to a

disturbance of the H2 species flux at position x'. Although diffusion occurs

throughout the flame, the effect is clearly seen and separated from 3
convective transport in the regions of x' > x. In particular in the latter

upstream region a non-zero response of CO2 can be ascribed to diffusion. The

consequences of this effect on the sensitivity spectrum and the attendant

chemistry have been noted in the previous section and contrasted with the 3
results from the pure temporal problem 2 .

The role of diffusion in the flame may also be investigated by examining

a flow reactor system under mass flow conditions which diminish the role of 5
the diffusion terms and thereby simulate the pure temporal problem. We

I



third draft -- 1-29-91

- 18 -

illustrate this by examining the analytic results from a simple linear

kinetics problem modelled by

D d 2 9 dQ + K 0 - O, (5.3)-

which may be equivalently written as

D d X d] + y - 0, (5.4)

where A-U-1 K U is the diagonal matrix of the eigenvalues of K and Y - U-1 0

and D is a chemistry weighted diffusion coefficient. The general solution to

Eq. (5.4) is a linear combination

Yi(x) - / ai1(x) + bin2(x)] (5.5)

where n

1()- exp [M+ 2 D 1 x

(5.6)

2(X) - exp [[ + x4DAn
n2D

and i -,...K and n -.... K.

The Green's function for Eq. (5.3) may be expressed in terms of the diagonal

Green's function Gnn(x,x'2 for Eq. (5.4). The latter function satisfies the

boundary conditions Gnn(^,x')Ix±- - 0 and it can be constructed

from the linearly independent solutions 01(x) and 0(x). For M >> 4DIAnI,

these are easily shown to be
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I
2DA

2DA exp [n (x-x'), x X' (5.7a)(A7-2 2An D )  M

Gnn(x,x') - 2DM exp [A (x-x')] exp [" n ' x x')], x' > x

(A2 2nD) M (5.7b) 

I

Physically stable solutions exist for the eigenvalues being negative

semidefinite AnS0 and with this observation we can simply analyze the Green's g
function elements in Eq. (5.7). I the downstream region x>x' exponential

decay occurs from the point of disturbance x' dictated by An/M. This

behavior is exactly reminiscent of what is found i., purely tefrporal kinetics

where the variables t and t' have an analogous meaning to x and x'. In I
addition, a zemporal kinetics system would also have the Green's fanction

being strictly zero for t'>t due to causality and the analogous region in the

present reaction-diffusion-convection problem is x'>x. From Eq. (5.7b) it is 3
evident that the Green's function in the present problem is not strictly zero

in this !$-'me with the parameter M/D playing a critical role. In

particular, for larger values of M/D the Green's function will decay more

rapidly from the point of disturbance x' in the upstream regime x'>x. This

bel.avior is physically reasonable and can be viewed as arising due to a

diminution of the diffusion coefficient D.

The Green's function matrix results discussed above are consistent with £
the linear parametric gradients of Section 1-. The CO mole fraction was

observed to be highly sensitive, with the same directional sense, as the

total mass flow rate and the diffusive coefficients upon the reactants H2 and 5
CG. Here, increasing the diffusion coefficients of H2 and CO adds to the

overall mass flux into the flame front decreasing the effectiveness of

I
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radical transport upstream. In the context of the present analysis (i.e.,

examinirs the differences in kinet.ics between transport-free systems and

flames), most of these differences, particularly the changes in importance of

the bi-molecular radical-radical reactions (as discussed above), are

explainable through the effect of transport on the mixing of the low (HO2 ,

H202 ) and the high (H, 0, OH) temperature intermediate species.

Vb. Effect of Mixture Exothermicity

Another sig-nificant difference between the present flame problem and the

analogous temporal system is the overall exothermicity of the mixtures

studied. In the shock tube and the flow reactor experiments, the mixtures

were all dilute and this nearly thermo-neutral. The flame problem on the

other hand is extremely exothermic, and much of the controlling chemistr" in

the flame can be attribuLed to the rapid temperatuze rise. The heats of

reaction of several of the elementary steps, found to Le important in the

flame problem, are listed in Table 3. It is apparert that the HO2 production

and consumption reactions are all very exothermic.

The degree to which the temperature plays an intermediary lole in making

a parti-ular reaction important can be investigated using "reduced" Green's

function techniques1 7 . In this technique, the response of the temperature

may be frozen at its nominal spatial dependence T(x) and shielded from other

perturbations introduced to the system. Hence, the dynamic couplings between

the chemical species may be examined without tem~eratur( responses playing a

role. We should emplasize that this temperature constrained calculation does

not effect the structure of the flame in any way; only the sensitivities will

Jiffer. Some linear sensitivity gradients obtained with the frozen

temperature profile are showr in Figure 7. The importance of the HO2
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radical reactions is greatly reduced and much of the self-similarity in the

gradient profiles has disappeared. This disappearance of the self-similarity

confirms the dominant controlling role of the temperature1 6 which enters the

problem exponentially whereas all other dependent variables (i.e., species)

enter linearly or quadratically. I
Finally, it is also interesting to note that of all the reactions, only

one coefficient has changed directional sense, i.e., H2 + OH - H20 + H. In

the constrained temperature problem, this reaction inhibits CO oxidation,

much as was found in previous temporal problems, since the heat release from

this reaction is now not available to accelerate the overall reaction as was

found in the original flame problem. Hence, the reaction exothermicity not

only can change which reactions are important, but also the role these

reactions play.

VI. Concluding Remarks 3
In the present paper, modelling and sensitivity analysis techniques have

been applied to study the structure of a premixed CO + H2 + 02 flame. Our

analysis has shown that the presence of molecular transport alters the 3
chemistry of this system. Furthermore, the exothermicity of the mixture also

affects the chemistry. Both of these results are particularly important with

regard to the development, application, and validation of reaction

mechanisms. Specifically, the fast reactions of H02 with H, OH, and 0 were I
found to be important at all positions throughout the low-pressure, lean

flame studied here. Accurate rate data for these reactions at temperatures

above 1000 K are therefore of obvious importance. Also, although the 3
presence of hydrogen peroxide in the mechanism is found to have little

influence on major species, temperature and the flame speed, we find it to be

I
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of considerable importance with Legard to the concentration of other

intermediates.

Lastly, some general comments on chemical kinetic studies in flames,

flow reactors, and shock tubes may be reasoned from the present results.

Without a doubt, the simplest of these experiments to interpret kinetics data

are from shock tubes and flow reactors. This can readily be seen from the

differential equations -governing these systems. However, because of their

practical importance, the kinetics of flames must continue to be studied

particularly since the dominant reaction pathways may differ from those found

in simpler transport-free experiments. Furthermore, data from premixed

flames are necessary to validate heat release rates and flame speed

predictions. In premixed flames, the kinetics and transport are of almost

equal importance; however, the system is almost entirely driven by the heat

release and hence the temperature profile through the flame. The ability to

deconvolute the kinetics, which produce this heat release, is very difficult

due to simultaneous transport processes and the high sensitivity of measured

zbzcrvables to the temperature measurements. Hence parameter

extraction/verification from flame studies is more difficult than in shock

tubes or flow reactors, as inferred from the present CO + H2 + 02 flame by

the high degree of coupling among parameters and consequently, such

evaluations should generally be carried out in the simpler systems.
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Figure Captions

Figure 1. Species and Temperature profiles for the sample flame.

Figure 2. Normalized sensitivities of the CO mole fraction profile with

respect to various reaction rate constants. In Figure 2(a-c)

the numbers labelling the various curves correspond to the 5
elementary steps from Table I. In figure 2d, DX denotes the

diffusion coefficient of species X.

Figure 3. Normalized sensitivities of the CO mole fraction profile with 3
respect to the system mass flow rate M, pressure P and the

thermal conductivity A.

Figure 4. Ratio of total Hydrogen to total Carbon in the fuel mixture.

Figure 5a. Sensitivity gradients of the CO mole fraction profile with I
respect to rate constants of various H202 reaction.

Conventions of Figure 1 apply.

Figure 5b. Sensitivity gradients of the 0-atom mole fraction profile with 3
respect to rate constants of various H202 reactions.

Conventions of Figure 1 apply.

Figure 6. Green's function surface 6C02(x)/6JH2 (x') corresponding to the i

response of CO2 to a perturbation in the flux of H2 .

Figure 7. Sensitivities of the CO mole fraction profile to various

reaction rates for the original flame but with a frozen

temperature profile. Conventions of Figure I apply. I

I

I
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TABLE 1. CO+H2+02 Kinetic Mechanism

INDEX REACTION Al n E 12

-,2-- HCO-+-H--- CO-- -+ --H2 - -- 2-- -0O(- ----)- ---0.0- --0.0 - f--

1,23 HCO + H - CO + H2 0 2.00(14)4 0.0 0.0 f

5,6 0 + HCO - CO + OH 3.02(13) 0.0 0.0 f

7,8 HCO + 02 - CO + HO2  3.01(12) 0.0 0.0 f

9,10 CO + HO2 - C02 + OH 1.50(14) 0.0 2.36(4) f

11,12 CO + OH - H + CO2  4.46(6) 1.5 -7.40(2) f

13,14 CO2 + 0 - CO + 02 2.53(12) 0.0 4.77(4) b

15,16 H + 02 - 0 + OH 3.73(17) -1.0 1.75(4) f

17,18 H2 + 0 - H + OH 1.80(10) 1.0 8.90(3) f

19,20 0 + H20 - OH + OH 4.58(9) 1.3 1.71(4) f

21,22 H + H20 - OH + H2  1.08(9) 1.3 3.65(3) b

23,24 H202 + OH - H20 + HO2  7.00(12) 0.0 1.43(3) f

25,26 HO2 + 0 - 02 + OH 1.81(13) 0.0 -3.97(2) f

27,28 H + HO2 - OH + OH 1.69(14) 0.0 8.74(2) f

29,30 H + HO2 - H20 + 02 6.63(13) 0.0 2.13(3) f

31,32 OH + HO2 - H2 + 02 1.45(16) -1.0 0.0 f

33,34 H202 + 02 - HO2 + HO2  1.00(13) 0.0 1.00(3) b

35,36 HO2 + H2 - H202 + H 1.70(12) 0.0 3.75(3) b

37,38 0 2 +M -0+0+ M 6.17(15) -0.5 0.0 b

39,40 H2 + M - H + H + M 2.20(14) 0.0 9.60(4) f

41,42 OH +M -0+ H +M 1.00(16) 0.0 0.0 b

43,44 H202 + M - OH + OH + M 120(17) 0.0 4.55(4) f

45,46 H20 + M - H + 02 + M 2.20(16) 0.0 1.05(5) f

47,48 HO2 + M - H + 02 + M 1.65(15) 0.0 -1.00(3) b
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INDEX REACTION A' n E 12
----- --------.

49,50 CO2 + M - CO + 0 + M 5.90(15) 0.0 4.10(3) b

51,52 HCO + 1., - H + CO + M 6.90(14) 0.0 7.00(3) b

53,54 H + H2 02 - H20 + OH 1.00(13) 0.0 3.59(3) f

[M] - [Nw] 4 [021 + 16[H 20] + 2.5[H 2] + 3.8[CO 2] + 1.9[CO] + [HO 2] + H202] +
[H] + [0] + [OH] + [HCO] + 0.87[Ar] 3
1 Units are cm-mole-sec-cal, k - ATnexp(-E/RT)

2 1 indicates direction of the reaction for which rate constant data are used.

References for the rate data may be found in Reference 3.

3 Index associated with forward rate constant, reverse rate constant. I
4 In this and all subsequent tables, numbers in parentheses denote powers

of ten.

I

I

I

I

I
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TABLE 2. Linear sensitivities of the flame speed
with respect to various pre-exponentional factors

J REACTION aIn(Flame Speed)/ainAj

11 CO + OH - C02 + H 42.1

12 C02 + H - CO + OH -0.8

15 H + 02 *OH + 0 9.9

16 OH + O H + 02  -9.2

17 H2 + 0 - OH + H 22.1

18 OH + H - H2 + 0 -2.6

19 0 + H2 0 OH + OH 6.3

20 OH + OH 0 + H20 -13.4

22 H2 + OH - H20 + H 11.6

25 0 + H02 - OH + 02  0.4

27 H + H02 - OH + OH 13.2

29 H + H02 - H2 + 02  -7.8

31 OH + H02 - H20 + 02  -5.4

46 H + OH + M - H20 + M -5.7

48 H + 02 + M - H02 + M -4.3

• sensitivities are evaluated at x - 0.75 cm
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TABLE 3. Heats of reaction evaluated at 298 K

---------------- --- -------- ---- -----I
j REACTION AH2 9 8(kcal/mole)

11 CO +OH-*C0 2 +H -24.97

15 H +0 2 - OH+O0 16.89

17 H2 +O0- OH +H 1.97

20 OH +OH 0 + H 2 0 -17.11

22 H2 +OH-*H 20 + H -15.13

25 0+ H0 2- OH+O02  -55.12

27 H +H0 2-*OH +OH -38.23

29 H +H0 2 - H 2 +O02  -57.10

31 OH + HO2 -~H 2 0 + 02 -72.23

40 H +H +M- H 2 +M -104.19

46 H +OH +M-.H 2 0 +M -119.32

48 H +0 2 + M-H0 2 +M -47.10
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6. A General Analysis of Approximate Lumping in Chemical Kinetics, G. Li
and H. Rabitz, Chem. Ent. Sci., 45, 977 (1990).
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Abstract-A general analysis of approximate lumping is presented. This analysis can be applied to any
reaction system with n species described by dy/dt = f(y), where y is an n-dimensional vector in a desired
region a and f(y) is an arbitrary n-dimensional function vector. Here we consider lumping by means of
a rectangular constant matrix M (i.e. 9 = My, where M is a row-full rank matrix and $ has dimension i not
larger than n). The observer theory initiated by Luenberger is formally employed to obtain the kinetic
equations and discuss the properties of the approximately lumped system. The approximately lumped
kinetic equations have the same form dg/dt = Mf(My) as that for exactly lumped ones, but depend on the
choice of the generalized inverse A of M. The { 1, 2, 3, 4}-inverse is a good choice of the generalized inverse
of M. The equations to determine the approximte lumping matrices M are presented. These equations can
be solved by iteration. An approach for choosing suitable initial iteration values of the equations is
illustrated by examples.

1. INTRODUCTION approximately. Developing a general approach for
A problem which frequently arises in the study of approximate lumping is very important for realistic
many subjects is the high dimensionality of math- practial problems. Approximate lumping has been
ematical models. Chemical problems of this type oc- discussed in some previous papers. Kuo and Wei
cur at the molecular level as well as in bulk kinetic (1969) proposed a method of constructing the lumped
phenomena. This paper will focus on kinetics where it kinetic rate constant matrix for unimolecular reaction
is impractical and often not necessary to incorporate systems. Luss and Hutchinson (1971), Luss (1975),
all the kinetic equations for each species in some Golikeri and Luss (1972, 1974) and Hutchinson and
complex reaction systems. Sometimes, even if the full Luss (1970) presented studies of the pitfalls and mag-
set of kinetic equations are available, they are often nitude of errors in the use of empirical rate expres-
needed in a reduced form for practical applications. sions for lumping many independent single or
Examples include day-to-day chemical plant oper- consecutive reactions. In the present paper we will
ation or optimization for the design of an engine treat the problem generally. Our exact lumping analy-
where integration of the full set of combustion partial sis will be employed as a rigorous starting point for
differential equations would be prohibitive. Conse- the development of approximate lumping.
quently, lumping, by which several species are com- Section 2 of this paper presents the method to
bined as a single component, is often a necessity for determine the kinetic equations of the approximately
theoretical and practical purposes. The theoretical lumped system by the formal use of observer theory,
analysis of lumping may also lead to some useful and discussion is given on the properties of the
general conclusions. For example, the "principle of lumped kinetic equations. The approximately lumped
invariant response" obtained (Wei and Kuo, 1969) in kinetic equations have the same form as those of exact
the lumping analysis of unimolecular reaction systems lumping, but the error depends on the choices of the
has been used as a guidance for determination of the lumping matrix and its generalized inverse. In Section
lumping scheme experimentally. 3, the { 1, 2, 3, 4}-inverse will be proved to be a good

In a previous paper (Li and Rabitz, 1989) a general choice of the generalized inverse of the lumping
analysis of exact lumping was presented. Unfortu- matrix and the equations to determine the approxi-
nately, sometimes, even if a system is exactly lump- mate lumping matrix are derived. Section 4 considers
able, the resultant exact lumping schemes may not the approximate lumping schemes valid in a given
meet practically desired goals. For example, in the region of composition space. In Section 5, an ap-
CO-H20-02 combustion system (Yetter et al., 1985) proach for choosing suitable initial iteration values of
we would like the easily measurable concentrations of the equations to determine the lumping matrix is
CO, CO 2, 0 2 , and H,0 to be unlumped. With this presented. Section 6 presents some simple examples
constraint, the system likely cannot be exactly with the formulations. Finally, Section 7 gives a dis-
lumped, and we have to lump the species of the system cussion of the results. The paper will draw heavily on

the earlier work on exact lumping (Li and Rabitz.
1989), and the reader is guided to this reference for

'Author to whom correspondence should be addressed. certain details.
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2. DETERMINING THE KINETIC EQUATIONS OF THE This condition is also sufficient; if there exists a matrix
APPROXIMATELY LUMPED SYSTEM M satisfying eq. (5), it will be shown that M has the

24. Lumped system kinetics property of this statement. Using eqs (1) and (4) we
Suppose the kinetics of an n-component reaction have

system can be described by Mdy/dt - dg/dt = Mf(y) - "(q) - e(y)

dy/dt = f(y) (I) d(M,- )/dt = 0

where y is an n-composition vector and f(y) is an i.e.
arbitrary n-function vector which does not contain My(t) - 9(t) = constant. (7)
t explicitly.

Here we only consider a special class of lumping by When 5(0) = My(O), the constant vector is the null
means of an A x n constant matrix M with rank vector. Then we have
A (i < n). If a system can be exactly lumped by the
matrix M, it means that for 9(t) = My(t).

(2) For given M and f(y) it is always possible to con-
struct a pair of f(q) and e(y) to satisfy eq. (5). There-

we can find an Ai-function vector f(5) such that fore, we can always find a set of differential equations
d9/dt = f(q). (3) as eq. (4) to describe the behavior of the lumped

species 9. We can see that exact lumping is just the
If a system is not qxactly lumpable by a given M, one special case e(y) = 0. In the exact case eq. (5) becomes
cannot find a set of differential equations as eq. (3) to Mf(y) = f() (8)
describe the behaviour of '. In this case we need to
find a set of differential equations to describe the which was given in our previous paper about
behavior of 5 approximately. Liu and Lapidus (1973) analysis of exact lumping.
formally employed the observer theory initiated by From eq. (5) we see for a given M and ?(q) that e(y)
Luenberger (1964) for control problems to obtain the is uniquely determined by
necessary and sufficient conditions of exact and ap-
proximate lumping for unimolecular reaction system.
Here we further extend this approach to nonlinear However, foc a given M and e(y), i(q) may not exist.
systems for the determination of the kinetic equations For example if e(y) is taken to be the identically zero
of the approximately lumped system. Although no function, the appropriate ?(q) exists only if the orig-
actual observations are assumed to have been made, inal system is exactly lumpable by M. A reasonable
the analogy with observer theory is nevertheless still expectation is that ?(9) have the same form to that of
useful. the eacdutly lumped equations:

The output y(t) of the kinetic system in eq. (1) can f(5) = Mf(M5) (10)
be employed to drive another system described by

where M; is a {1, 2, 3}-generalized invers, of t, (Ben-
Israel and Greville, 1974) satisfying

where e(y) is an Ai-dimensional function vector called
the error vetor. The second system in eq. (4) is the MM = 1;' (I!)

observer of the first one in eq. (1). Then we have the Under t:iis coadition we can prove that e(y) satisfies
following statement: let S, be an n-component kinetic e(MMy) = 0. (12)
system described by eq. (1), which drives another

Ath-order (A < n) lumped kinetic system S, described Indeed, if we choose j(0) = My(()), then we obtain
by eq. (4). Suppose there is an A x n row-full rank 5() = My(t). Substituting eq. (10) into eq. (5) and
constant lumping matrix M satisfying rearranging it yields

Mf(y) = f(5) + e(y). (5) e(y) = Mf(y) - Mf(M,)

If 9(0) = My(0), then 9(t) = My(t) for all t > 0, or = Mf(y) - Mf(AMMy). (13)
more generally: This is valid for any value of y. Therefore, since y can

My(t) - 5(t) = constant. (6) be arbitrary we choose y = QMy, then

This statement can be proved as follows. Suppose that e(iMMy) Mf(,QMy) - %tf(MMMMy
such a lumping matrix did exist, i.e. it satisfies eq. (6).
The two systems are governed by eqs (1) and (4). Mf(MMy) - Mf(MMy)

Using eq. (6) we have =0. (14)

d[My(t)]/dt = dS(t)/dt. For exact lumping f(g) is unique and does not

Considering eqs (I) and (4) one obtains depend on the choice of M. Howeet, now this is no
longer true. Both e(y) and f(q) are dependent on the

Mf(y) = ?(y) + e(y). choice of A. Under the constraint of eq. (10), eq. (4)
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can be represented as from fly) but usually has a form similar to that of fly)

d5 idt = Atf(M ) + ejy . (15) as well.

Equation (15) does not actually reduce the dimension 3. THE EQUATIONS FOR DETERMINING THE
of the syste,. because the I. st term e(y) is a function APPROXIMATE LUMPING SCHEMES
of y. However, if the term ey) for given M and ,q is
smalh compared to tne first term on the right-hand From eq. (13) one can see that ely) is a function of
side of eq. (15), and does not sigAicantly effect the M and M'. Therefe e. if we desire to use eq. (16) as an

solution, the lumped system can be approximately approximately lumped model, we need to determine

described by suitable M and Al, which give the smallest ety) in the
desired region of Y,-space. There may be several ways

d5/dt z Mf(KM '). (16) to reach this goal however, since we use the same
formula for approximate lumning as that of the exactIn order to minimize e(y) our task is to develop an

approach to determine appropriate M and M. Notice case, we wi!l apply our results of exact lumping as

that , in eq. (16) is equal to My only if the original a starting point to solve this problem-

system is eactly lumpable by M. For the sake of
simplicity, we do not distinguish the j in eq. (16) and 3A. Exact and approximate lumping in a desired region
the 5 = My, but the reader should keep this in mind. of the composition Y.-space

In realistic problems the lumping schemes are
2B. The properties ofjf($') and e(y) ,sually desired in a particular region 0 of the compo-

The conditions e(A;My) = 0 has some speci,: sition Y,-space. In the previous paper on exact lump-
liroperties. The mapping by the projection operator ing, we did not give any restriction on the values of y.
.AM becomes an "endomorphism" of the composi- i.e. y can take any value in Y,_ When y is required in
tion Y.-space. The range of this endomorphic map- - desired region f. we will C -monstrate that the
ping is an A-dimensional Y;-subspace of the necessary and sulfic?"rnt conditiot, for the existence of
composition space. The equation e(MMy) = 0 means exact lumpng of eq. (1) are the same except that y E Q:
that for any value of y in the Y;-subspace 1(f) is (1) the subspace ..# spanned by the row vectors of the
exactly equal to Mf(y) and the system is then exactly lumping matrix M is a fixed invariant one under
lumpable in this region. JT(y) for all values of yc-2. and (2) AM satisfics the

Supp"se the original kinetic system has a stable following equation
point y' lor a given initial composition such that M [dyV) - J{MMy)=( VyE(. (19)

lim y(t) = y". (17) Let (1i represent the region of M My, where y E
f- and AMi is a particular generalized inverse of M sat-

This is a common circumstance for mo:t kinetic sys- isfying MM, = I;. First, we will prove that these two
tems. II we can choose the generalized inverse R of conditions hold for all y : ( if they hold in 0. Since
M such that the stable point y* is in the Y;-subspace. .# is Jr(y)-invariar, .,, e' . (19) can be rewritten as
then we have Q(y)M = M.WTM My) VyVfl (20)

e(MMy* = e(y*) = 0. (18) where Q(y) is t, i;,r,oecified 6 x A matrix. This im-

Let 5* = My* ana substitute it into eq. (15). Con- plies that _4 is -tso jT(y)-invariant in the reg'
sidering that f(y*) = 0, we obtain Letting = My, then we obtain

d5*/dt = Mf(M5- *) 4- e(y*) M[ J(5) - J(4 jMM5)] = M[ J(M,My)

= Mf(MMy* ) + e(XfMy* ) - J(M A4M My)] = M[ J(,q 'My)

= Mf(y*) = 0. - J(MiMy)] = 0. (21)

This indicates that in this case 5* = fy* is the Thus eq. (19) is also valid in fl,.
stable point of e- (16). When both the original and For a given Al there are an infinite number of ff.
the lumped systems have only one stable point, the The gcneral form of them is
above discussion implies that. %' ,en t becomes larger -

and larger, the solution of eq. (16) will be closer and M = , + - A1 AI) (22)

closer to the exact solution of eq. (1). A similar obser- where Al, is any given generalized inverse of Ml sat-
vation for unimolecular reaction systems was ob- isfying M i = I;, and Z is at arbitrary n x i matrix.
tained by Kuo and Wei 11959). The reader can readily prove that Al given by eq. (22)

The determination of f(4) by eq. (10) has another satisfies MM = 1,; and any Al1 satisfying MM = I,;
property. Since can be represented it the frn, of eq. 122) as follows:

iq lff(MAli) Al1 = q , + (I1, - ."m)(,f, ). (23)

f,(9) is a linear combination of the elements of f)(.V faking account of eqs (12) and (15) we know that in
Therefore f( ) can be determined not only directly 0, the system described by eq. (i is always exactly

'E *',4-.
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lumpable by A. Since the two conditions old for any trajectory:
Q, [its .1, satisfies eq. (19)] if they hold in f. we can
therefore consider exact lumping in ihe region O[, JVI[(y) - J(A3ly kQ(M ]d
= '= (,Aherc 2c Q fl) instead of Q. Following J
the same procedure as in our previous paper on exact = A[fy) - f(A! ,y ] - m[f(yo) - f('Myo)]
lumping one can prove that the two conditions are
necessary. We will demonst rate tbat they are also = M[f(y - f(MAy)] = 0. (33)
sufficien:. Here we used the relation Yo = -qMyo. Equation (33)

Notice :;i. ,f 2 s ,:onnccted. so is This Is gives
bec:luse that the elements of Nis can change continu-

,sl by continuously changing the elements of Z. Aff(y) = Mf(,MM y) VVfl. (34)
Then the images of MMQ are contnuus and con- Fhen the system described by eq. (1) with the con-
nected. We can further prove that Q is also connected straint ye !2 can be exactly lumped by M and the
vith , Q,. Suppose that there is a vectur y 0 Ker lump A kinetic equations are eq. (16). Therefore, these

At in fi (otherwise My in Q? are identically zero and conditions are sufiicient.
,here is no necessity to consider lumping). Tler we The first necessary and sufficient condition of exact

San demonstrate that there exists a projection oper- lumping ir 0 can a)e represented as the following
.iaor P = qM in Y. with Py = y. equation

,it ze My = c * 0, one can always find a noniingu-
lai 4 x A matrix Q such that (' -MrMT) j, (yjM' = 0 VyEfl. (35)

QMy = M'y =Q = e, (24) This follows because the null space of the projection
operator 1,- MTvrM T is ./. If ./I is a fixed Jr(y)_

where M' is another m.atrix representation of .1 and invariant subspace (independent on yeQf), i.e.
e is the unit vector. There alo xist i - I vectors w.
satisfying Jr(y)M r=TQT(y) (36)

4'w, = e . (i1= .2 .... , A- 1. (25) then

Let y and wis compose the matrix (I, - MT r)Jr~v)A T = (I - MpT T)MTQT(y)

: ' = ( y w , . W - _ ) 2 ' = j M T - M r,# ) Q T ( Y )

Then we have = 0. (37)
If a system ;s not exactly lumpat.e, eqs (19) and (35)

MM' .2 do not hold exactly. In th. -ase, it is natural to define

The matrix P = M 'M' ; a projection operator due to two error matrices E,(.-i and E,(y) to describe the
P2 = P and deviatio-, from the exact lumping for given M and M:

Py = M 'M'y M 'e = y. (28) E = (I - M "RT )Jr(y)Mr Vye Q (38)

Letting E,(y)= M[J(y - J(AMy)] VyeQ. (39)

For approximate lumping, our t- . is simply to find
' =l 'Q (29) appropriate M and A which will minimize the abso-

lute values of all elements of E,(y) and E2(y) in the
yietds desired region of y. We will first determne M in

MMt Q-M 'Q =; (30) Sect: n 3B based on minimization of E,(y), and then
present the equations to determine M by minimiz-

and ation of E,(y) or El(y) for all values of 2 aft :n
Sections 3C and D. respectively. Finally, at the end of

P = M M' = ,JQ-'QM = AiM. (31) Section 3D t)-e simultaneous m-iimization of E,(y)
and El(y) to get Al vill be discussed.

This result shows that we can find a generalized in-

verse ,q of M such that AqIMy = y. This implies that 3B, Determinatin ol the eneralized inverse R
, Qjgo-, 0. and then the whole R,,., is con-

nected. For a given Ml there are an infinite number of ,I.which makes the determination of approximate lump-From the above two necessary conditions of exact
lumping in Q we can deduce the following equation: ing schemes very complicated. Several considerations

on me choice of MQ might be made for different
J(dy = MJi.IMy ),IA VV C ,°,. 132) purposes. For example. possible requirements are that

the lumped model follow, a uni- and or bimolecular
Since 0,,, is connected, we can choose a trajectory reaction scheme and that the image of the equilibrium

starting from a point y, in qMfl (where Al is any of point of the original system upon mapping by QIM is
the generalized inverses M) to an arbitrary point y in in the Y4-subspace. In this Lase, Al must satisfy other
0 and integrate eq. (32) will respect to y along this restrictions. Here we only consider the determination
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of Q by a minimum demand, i.e. the smallest EI(y) 3C. The matrix equations Jor determining M under
and E,(y) for a given M. We will prove that the 1, 2, minimization of E,
3. 4f-inverse will give the smallest E,(y) for any value After choosing M = MT, we only need to determine
of y. When ,ff consists of an orthonormal basis, i.e. M, which will minimize E, (y) and E,(y) in the desired

region of y. In this case E,(y) is represented as

E1 (y) = (I. - MTM)jT(y)M r . (45)

the I, 2. 3, 4}-inverse is simply-,kfdR Then the deter- Here we discuss two cases: unconstrained and con-
mination of AI and M will be reduced to only deter- strained approximae ungontrie.
mining M. In order to represent E, as being the strai mate lumping matrices.
function of R and y for a given M, we will use the (I) Unconstrained approximate lumping matrices.
symbol E,(,, y) here. Just like the determination of 4, we define the error

It is reasonable to denote a measure of the error
Z , y) for a given M and y by the trace of matri Z,(y) for given M and y by the trace of the matrix

ET(,. y)E 1(,, y), which is the sum of the square o Er(y) E , (y), which is the sum of the squares of all the,(My)E(My),whih i thsur ofhesuarsofelements in Et (y):
all the elements in EI(a, y):

Z(1 ?, y) = tr ET(M, y)E,(M , y). (41) Z (y ) = tr [ET(y)E,(y)]

Our task is to choose an M such that Z(M, y) has the = tr [Mj(y)(I, _ MTM)(I. _ MTM)jT(y)MT

smallest possible value in a desired region 0 of y. = tr [MJ(y)(I. - MTM)jT(y)MT]. (46)
As a mathematical 'preliminary observe that an

n x n symmetric nonnegative definite matrix B, de- Following again the previous work on exact lumping,

noted as B > 0, can be represented as ppT and jT(y) can be decomposed into a linear combination of

tr B > 0. If both A and B are n x n symmetric non- appropriate constant matrices Ak (k = 1,2,. n .

negative definite matrices with A - B > 0, then we i.e.

say that A > B >0. Thus from
ETy a, a(y) A, (47)

tr A - tr B = tr (A - B) _> 0 k=a

we have The coefficients a,(y) are functions of y. Substituting

tr A > tr B >0. (42) eq. (47) into eq. (46) yields

We can now make use of this relation to find the best Z, (y) = tr -M a,(y)A (I, _ MTM)
choice of M. Letting M' represent the 11, 2, 3, 4}-in- L

vrse of M and considering eq. (38) followed by alge- , MTl
braic manipulations one may establish that a4. (y) A,

ET(M , y(E 1 (Ml. y) - E T(Mt, y)E,(M', y)

= MJ(y)(I- MM)(I,- MT T)JT(Y)MT =tr Y_ ak(y)ak.(y)MAr(I, - MTM)A,.MT.
m "y(,-Q )1 k~k'=

- MVJ(y)(I - MtM)(I,- MTMT)jT(y)MT (48)

= [MJ(y)(M t --- M )M] [MJ(y) If y varies in a region f0 of the Y,-composition
(Al -_> 0. (43) space, the total error Z, can be denoted by the inte-

×M )M] 04 gration of Z,(y) over Q:

Here we used the properties of the 1, 2, 3, 4}-inverse r
(Ben-Isreal and Greville, 1974), i.e. Z' =J Zt(Y ) dfl

MM tM =M MtMM= M(
(MMI)T = MMI (MM)r = MtM. = tr Y_ a,(y) ak.(y) dQ

For brevity we leave the proof of eq. (43) to the reader.
Since ET(Vd. y)E(M, y) and Er(M5 , y)E,(M t , y) are x AAr(J, -- MrM)AI.Mr
nonnegative definite, we may use eq. (42) to show that "

= tr Y ak, M Ar(l - M'M)A,.M r  (49)
Z(AM, y)>Z(M',y) _> 0 VMeMM = 1;. k.k=,

Notice that there is no restriction on y so it is valid where
for any value of y E . Th,-refore M = M ' gives the r
global minimum of E, for a given M. Since the error a ci. ak(y) a. (y) dQ. (50)
of lumping is independent of the choice of the basis for
a given fixed J T(y)-invariant subspace ', then we let The flexibility available in choosing f2 allows for
M satisfy eq. (40) and adopt the choice M = M T. We tailoring the lumping as desired.
should emphasize that this choice may not be perfect. We need to determine a matrix M. which gives the
because E, is not considered. smallest total error ZI. This problem can be de-
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scribed as type of constraint, and this perspective will be dis-
cussed further in Section 4. The determination of the

minimize Z, = tr Y akk.MA[(. - MrM)AkMT approximate lumping schemes under general con-
k.k I (51) straints is an important problem. Constraints on the

subject to MMT = i. species can be included by specifying a part of the

The constraint can be included by Lagrange's method lumping matrix M and seeking to determine the re-
of undetermined multipliemwh~t -mainder of it. This circumstance corresponds to the

above hitua.c. of there being unlumped species.
M where the known part of M is just a submatrix with

= tr ak*MAr, - MTM)Ak.MT unit diagonal elements and zeros elsewhere. In this
k.k= I case the lumping matrix M can be represented as

+ Y j mi,,mjs - 6ij (52) M, (56).j= M =( ) 6M)

where ;.is are Lagrange multipliers, mki is the where MG is given and also required to satisfy
(k, /)-entry of M, and bij is the Kronecker delta func- MGM r 

= I; MD will be determined. Then we have
tion.

In order to determine the matrix M we need to E1 (y) = (I. - MTM)JT(y)MT

solve the following equations: = (In - MTMG - MTMD)

OZ, .OM T = 0
0Z"/10Ai - = 0 (for all i and j). x Y a,(y)Ak(GMD (57)

k= 1

After some lengthy manipulation (Appendix k), we Now the problem is expressed as
find that M must satisfy the following matrix equa-
tion: In (MG (1\MMminimize Z, = tr Y akk, )A - G

(I - MTM) T ak(AkAk- A[MTMA rkrMI

k.k'= I - MoMD)Ak.(MTMT)

- AMTMArT)MT = 0. (54) subject to MMT = 1;. (58)

It is easy to demonstrate that, if a system is exactly Using the same approach as that for eq. (51), we find
lumpable, the corresponding matrix M of a fixed that MD must satisfy the following matrix equation:
jT(y)-invariant subspace M is a solution of eq. (54).

Let us now consider uni- and/or bimolecular reaction m

systems. In this case, it has been proved in our previ- ( G D Y a.(AA

ous paper that # is simultaneously invariant under kk=

all Aks, i.e. - A' IMA, - A, G GA,

AMT = Mrpk (55) - A[M MDA,, - AM ,MAk)Mo = 0. (59)

where P, is an A-square constant matrix. Utilizing this Equation (59) is almost the same as eq. (54) except for
relation one can readily prove the validity of eq. (54). containing some constant matrices and eq. (59) can be
The explicit dependence on Ak and akk. in eq. (54) can obtained by substituting eq. (56) into eq. (54).
be eliminated by substituting eqs (47) and (50) back
into eq. (54) to yield an equation which contains J(y)
instead. Then the same conclusion can be obtained in 3D. The equation for determining M under minimiz-

the same way for other systems not easily decomposed ation of E2

to a linear combination of constant matrices. To save Just like the minimization for E1, we define the
space we leave the demonstration to the reader. error Z2 (y) for given M and y by the trace of matrix

Equation (54) is a nonlinear matrix equation, which Er(y)E 2(y), which is the sum of the squares of all the

is likely difficult to solve analytically. However, after elements in E2 (y). Since we have chosen Mf = M T in

expansion of eq. (54), we obtain n x h nonlinear alge- Section 3B, then
braic equations with the highest order 5 in the el- Z2 (y) = tr [Er(y)E2 {y)] = tr [E2 (y)Er(y)]

ements of M. The equations can be solved numerically
by an iteration method, if one uses suitable initial = tr {M[J(y) - J(MTMy)][Jr(y)
values of M. - jT(MTMy)]MT} = tr 1M[J(y)JT(y)

(2) Constrained approximate lumping matrices. - j(y)jT(MTMy) - j(MTMy)jT(y)

Most probably the lumped model will satisfy some + J(MTMy)jT(MTMy)]MT}. (60)
restrictions. For instance, some species may be left Let
unlumped for practical purposes. The freedom in
choosing Ql in eq. (50) also corresponds to a special z = MrMy. (61)
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Like eq. (47) we have 4. DETERMINATION OF THE APPROXIMATE LUMPING
MATRICES VALID IN A GIVEN REGION OF THE

j T(MTMy) = ak(z)Ak. (62) COMPOSITION Y,-SPACE

k = In the foregoing section the equations to determine

Utilizing eqs (47) and (62), eq. (60) becomes the approximate lumping matrices have been pres-
ented. For realistic problems the chosen initial com-

Z 2 (y) = tr Z [ad y)ak.(y) -:(y)a(z) positions will usually constrain the system to some

k.k' I small region nf ennposition space. Thezzfore the ap-
- ak(z)ak (y) + ak(z)ak,(z)]MAk1A.MT. (63) proximate lumping matrix validated for the whole

composition space could give a quite large error for

If y varies in a region Ql of the Y,-composition space. some given narrow region. Choosing a better lumping

the total error Z 2 can be denoted by the integration of matrix in a given region becomes desirable, and

Z2 (y) over Q: multiple lumping matrices may be used to cover
a large portion of composition space. Several lumping

f2 matrices of various dimensions h and quality might

S= ~Z:(y)df2 also exist in each region.
The derivations leading to eqs (54), (59) and (69)

tr
=t f Ilak(y)ak(y) - ak(y)ak,(z) show that the determination of M follows the same

k.k=I t .JRprocedure regardless of the size of the desired region.
- akdz)ak.(y) + hk(z)ak,(z)] df2 MgA MT  Equations (54), (59) and (69) contain the coefficientsakk, and P..k.(M) defined by eqs (65H68). These coeffi-

Sa Mcients are evaluated in a given region 0 of the compo-
tr= I sition space. Thus different regions simply correspond

to different values for the coefficients ak, and gkk'(M).
+ c,(M)] MAk Ak. (64) After the determination of a*,. and #&A.(M) in a given

where region, one can obtain the corresponding lumping
matrices by solving eqs (40), (54) [or (59)] and (69)

akk = in ak(y)ak'(y) df) (65) simultaneously.

bkk.(M) = ak(y)a*.(z) dQ (66) 4A. Determination of akk, and Iikk.(M) for the whole
fa composition region

The whole composition region in realistic problems

Ckk(M)= ,ak(z)a. z d!Q (67) means that under the condition of the total quantity
c > 0 of the reaction system being constant, any
species can take on any value from 0 to the c. This is

and b&k(M) and chk(M) are functions of M due to eq. a rather special circumstance which can arise in cer-
(61). Let tain applications (e.g. when y corresponds to a state

tJkk(M) = akk. - bkk.(M) - bk.(M) + ckk(M). (68) population vector). Notice that in this case all )ks are
Te wequivalent for the purpose of determining akV and

Then we have fl.~P(M) with

Z= tr Y fl,(M)MA[AM T . (69) .CCr = Y Yi = c. (70)

Since flhk'(M) is a complicated function of M, it is very
difficult to obtain the analytic solution of the equation Then using eqs (65H67) we have
arising from differentiation of Z 2 with respect to M.
Therefore, we cannot obtain the corresponding equa- akV = f ak(y)ak,(y) dO2
tion to minimize Z2 as eq. (54) or (59). Jo

Thus far we have considerred the determination of = , -

M from minimization of Z, and Z2 separatel), but in .... a,(y)
practice we seek a dual minimization of Z, and Z 2 to Jo0o

obtain M. Considering that Z 2 is a nonnegative x ak,(y) dy dy 2 ... dy.. (71)
number and the smaller the better, we can treat Z, as
a parameter and choose an appropriate value of it, r
and then solve eqs (40), (54) [or (59)] and (69) simul- NO&(M) =O a(y)ak.(z) dfi
taneously to determine M. We can choose the value of
Z2 as small as possible under the condition that the= flfc -',. f c .'
resultant Z, is acceptable. In this way the approxi- J0 aY)

mate lumping matrices M with orthonormal rows and
minima E, and E2 can be obtained. ar.(MT My) dydy2 ... dy.. (72)
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C..(M) = f a,(z)a,.(z) dfM NO f lyd(

= f(n +I!. oY,... fak(MrAy) =n + 1) 82)

ak.(M rM y) dyl :y . d.. y (73) b , ' y

Returning to the uni- and/or bimolecular reaction b .n y A df7
systems, we proved that the transpose of the Jacobian ft
matrix JT(y)can be expressed as(Li and Rabitz. 1989) = h., J _ ykYid r) + hkk V2 df)

JT(y) = Ao + Xy&Ak. (74) c. + 2 2t."+ 2
k=1 - hk + hk.k

Then (n +2)! (n + 2)!
i*k

-c ' dcc dy, Y . .dy, nC +

a(,(, = f - d hki ) +2 (83)
(Ak hA.)(n + 2)!

CM
(75) Similarly, we also have

Using the equivalence of the y~s we can change the co LM) cd = . (84)

order of yks such that y, = y, and Y, = y2 . Then we n!
have o

a. ako a0  
CO = Cko Jz k df

.... YJ dtdy , .dy = hi - (85)0 ,=1 (n + 1)!'

Cn+ I
( . (76) = iC n z z,. dQ)(n + 0}! 

Ckh

alk =Ja ... y... dy dy2  hihk,+ + ) " (86)

2c" ++2
I i.j= I i= 1

dy,. 2( 77) Without any loss of generality it is convenient to
(n + 2)! normalize the composition unit such that

akh. = a1 2  c=1. (87)

1 ... YIY2 dydy2 .. dy, Then the coefficients a,., bkk.(M) and c,,.IM) have
, simple values:

-(n+2 (k#k'). (78) 1
-(n + 2)! a00 oo n!

In the same way, we can determine b.(M) and
Ck.(M): ao - ako (n + 1)! (88)

boo(M) dO (79) 2
f o n a

!
= ( )

b aok zd. (n + 2)!bo = /Z dfl1
sO au'=(n + 2)!

Y- hkuyi df) hk y, y1 df) Multiplying all a~k. by the same constant will not
0= i=1 fa affect the solutions of eqs (54), (59) and (69). Hence, we

h n+" 1)! (80) can use another set of ak'k:

t= '(n + )

where a00 = (n + 2)(n + I)

hi ski(8)aoi, = a~o = n + 2 (9h,, = m. m,, (81) (9

atk = 2

and m, is the (i. j)-entry of M. ak. = !.
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Following the same procedure we have respectively. Since ak(y), f(y) and initial y(O) have
+ ) been given, one can obtain akk numerically by these

equations. Similarly, one can determine the corre-

/o =( sponding bkk'(M) and ck.(M), and consequently
= h n + 2) flk(M) by these equations through the replacement of

i= a,(y)ak,(y) by ak(y)ak.(z) and ak(z)ak.(z), respectively.3k0 = n+ 2 ":-

4C. Determination of akk, and Okk(M) for a gien re-
bkk = hk'k + hk,. (90) gion of the composition space

ij= For most realistic problems the initial composition
coo = (n + 2)(n + 1) is constrained to be chosen from a given region. Sup-

a \pose the initial composition contains only I species
Co =cko= I hki)(n + 2) (91) taking values in the following regions:

0 0 0

an 
ij _< Y1 Yijf

ck,, = hk,hkj + Y h0, 0y2 y  Yr (98.
i.j=I i=A (98)

Substituting above equations into eq. (68) yields

= o0y A y

ok = o= 0 where yo and v0 are the boundary values of the initial

concentration for species y. In this case the
flkk = 2 - 2 hkk + ' hki + ' hki hk (92) akk. equals the sum of those akcs of a reaction path

SI= ) i.j= I with the initial values located in the above region and

can be calculated numerically by the following equa-
+ h, tion:

(h k'k += hI -)(hk +=hick.. .. |ii -f(y°) d y d y .. . d y°  (99 )
jyo Ay fy y,

- Z (hk1 + hki - hkihw,) + h, hkth.j. where ak.(y° ) can be determined by eq. (96) or (97).
.i=t IFollowing the same procedure one can determine

4B. Determination of akk, and I,(M) for a reaction fi,{c(M). In this fashion we can obtain akk. and fl.(M)
path that are associated with a volume in composition

Let us consider fl as a reaction path in composition space.
space. In this case

dfl = ds (93) 5. THE CHOICE OF INITIAL VALUES FOR THE
EQUATIONS TO DETERMINE M

akk = ak(y)ak,(y) ds (94) In Section 3 we obtained the equations for deter-
mining M. However, eqs (54) and (59) give all the

where s is the length of the reaction path and sf minima, maxima and other stationary points of the

represents the final value of the given reaction path in total error Z. The particular type of solutions we

the composition space. Since obtain by an iteration method will depend on the

-, 1/2 chosen initial values of M. In most cases we are only
ds = ( dy? (95) interested in the global minima, but there is no easy

=I way to determine them. In some cases solutions at
we can determine akk. numerically by either one of the local minima may suffice, since choices of acceptable
following two means for a given initial y(O): M can also be guided by additional criteria besides

atv= ( Lady2 ] 1/2 minimization of Z, and Z 2 . When the dimension of
a &, ak (y)aF.(y) Y ] dt M is high, the number of solutions for the equations

J=1 dt to determine M becomes very large, as does the region

a 1tf 1/2 of the initial values of M we can choose from. It is thusJ a,(y)ak,(y) dt (96) impossible to randomly search the entire region.
0 Therefore we must develop a logical approach for

or choosing the initial values.
fYI! [ " (dyi\2112 We know from previous work that, if a system is

a ,, 1 , . I )dy I d exactly lumpable, the solutions of eqs (54), (59) and

f 1/2 (69) are the matrix representations of the simultan-

= (y) ahf(y)  f(y)tf(y)] 2  dy 1 . eously invariant subspaces of all A~s. When a system
Jiy,, (Y .does not have such a subspace with a given dimen-

(97) sion, the corresponding subspaces of the global min-
where Yj, and yIJ are the initial and final values of v , imum solutions of these equations should be very
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close to the invariant subspaces of all the As. Cer- groups of m A-invariant subspaces with the same
tainly, the solutions are not expected to be equally dimension i, which have the largest sums of d,. It is
close to each A-invariant subspace, because the coef- not necessary that each A-invariant subspace has
ficients aIy)s give the Aks different weights. This dimension i. The A-invariant subspace can have
property suggests an approach for choosing the suit- dimension larger than A, if any subspace of it is also
able initial values. If we can find a group of M such Ak-invariant.
that the corresponding suiipce-of each M has very Suppose we have found one of the closest groups of
high degrees of coincidence with the invariant sub- the invariant subspaces of the Aks, whose correspond-
spaces of all the As, these M will definitely give small ing matrix representations are Y,(r,), Y,(r 2 ) ...
Z, and one of them will give small Z 2 . Then these Ym(r,,) with dimension r, equal to or larger than n.

choices can be taken as initial values of M to minimize The columns of each Y,(rk) are orthonormal. Now we
Z, and Z 2 . need to determine the initial value of an A x n matrix

In order to achieve this task, the procedure to M. The best estimate is the matrix representation of
determine these initial choices for M consists of two the subspace which has the largest sum of the degrees
steps. First, we determine the groups of m A-dimen- of coincidence with al! Yk(r,)s. Suppose the transpose
sional subspaces, each one of which is invariant to one of the best initial estimte of the solution is denoted by
A,(k = 1,2 . i.n. m). These groups will have the high- an n x h matrix M' , which also has orthonormal
est sums of degrees of coincidence between each pair columns, then the sum of degrees of coincidence S be-
of invariant subspaces compared to other groups. tween Mr and all Y,(r,)s can be expressed as
This means tha% the invariant subspaces of Aks in
these groups are the closest to one another. Second, S = max tr M Yk(rk) Yk(rl)mT
we determine the A-dimensional subspace .0, which MMT

= Ln [h k I
has the highest sum of degrees of coincidence with
each invariant subspace in one of these closest groups. = max tr MYMT (101)
Then Mk is the subspace which has the highest degrees MM

T

of coincidence with the invariant subspaces of all the where
As. Therefore, the matrix representations of #,W can
be used as the initial values of M. Y YY(r,)Y, (r,)T - (102)

As shown in our previous paper (Li and Rabitz, Ai k=1
1989), the invariant subspaces of A, can be obtained
through its Jordan canonical form. If the number of The solution to the problem in eq. (101) has been
the invariant subspaces for each A, ic Cite, all the obtained (Bellman, 1970). Let the is represent the
groups of the invariant subspaces, each one of which eigenvalues of Y and

comes from one A,, can be examined. When the A, > A,
number is infinite, we are not ab!e to examine all of
them. Therefore, some good initial estimates of The corresponding eigenvector matrix is R and the
M may possibly be lost. Nevertheless, this approach first k columns of R are denoted by R. Then we have
will supply some suitable initial values of M.

We must now establish how to determine the de- max tr M YMT = X 2. (103)
gree of coincidence of two subspaces. Here we simply MMT = t t=1

give the approach; the details of it can be found in MT = R A). (104)
Appendix B. Suppose #(r) and *Y'(r') are r- and
r'-dimensional subspaces, respectively. We choose Therefore, when we have determined one of the
corresponding r and r' orthonormal vectors as their closest groups of invariant subspaces of the As, we
bases. Let the n x r and n x r' matrices Y(r) and Y(r') can get Y and its eigenvectors, which are arranged by
be the matrix representations of the two subspaces nonincreasing order of their eigenvalues. Then the
with r' < r. The degree of coincidence d, of the two first A eigenvectors are a good initial estimate of the
subspaces is defined as follows: solution M'. Notice that Y is a symmetric matrix and

I it has full eigenvectors. Any linear combination of the
d, - tr [ Y(r')r Y(r) Y(r)T Y(r')]. (100) eigenvectors corresponding to a multiple eigenvalue is

still an eigenvector of Y. Therefore, when Y has
When one of the two subspace is contained within the multiple eigenvalues, sometimes the solution is not
other one, d, = 1. When the two subspaces are or- unique. All the combinations of the eigenvectors with
thogonal to each other, dc = 0. In other cases, the same largest sums of corresponding eigenvalues
0 < d, < 1. It may also be proved that dc is inde- are solutions. Since this approach only supplies good
pendent of the choice of the orthonormal bases of estimates of M and the global minimum solutions in
M((r) and -#(r'). our problem usually are not unique, the first several

Using the definition of degree of coincidence be- closest groups should be used to construct initial
tween two subspaces we can determine d, for any two values of M.
subspaces with dimension A, each of which is invari- If we need to determine a constrained approximate
ant to different A,. Then we can find the closest lumping matrix, then in this case eq. (101 becomes
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M, T)are species and the numbers are unitless rate con-
S = max tr Y(M/M) stants.

2max (trMDyPr+trMYMr ) C, + C 2  C3  + C4
.idMT = k, +2 4M2

=S+S . . (105) 2C 2

The second term S. on the right-hand side of eq. (105)
is just the same as the S of unconstrained approximate
lumping. Therefore, after the determination of the C7 , Cs
closest groups we compute the corresponding values
of the first term SG for the given Ys and then we This is a modification of an example used in our

choose the solutions with the largest total S as the previous paper where k,, = I admitted some exact

initial estimates of constrained approximate lumping lumping solutions. By changing the rate constant k I
matrices. to 0.9 (example 1) and 0.1 (example 2) the system

In most cases, the number of the invariant sub- contains some exact and approximate lumping

spaces of A, is infinite. Sometimes, we cannot examine schemes. The focus here should be on the approxi-

all the groups of the Ak-invariant subspaces with mate lumping schemes, since in real problems the

dimensions from 1 to n - 1. Hence, we may fail to find presence of nontrivial exact lumping is not likely. If

suitable initial values'of M from the closest groups exact lumping schemes exist, they should be obtained

owing to incomplete examination or there only being by the present approach corresponding to the special

availabe lower dimensional A-invariant subspaces. case = = 0.

In order to treat this problem we can extend the above Letting y, represent the concentration of Ci, it is

method in two ways. We can use the sums of the easy to write out the kinetic equations and the trans-

lower-dimension solutions obtained from different pose of the corresponding Jacobian matrix Jr(y).

closest groups to give the estimates of the high- dyl/dt = - (I + k5I)yl - 2yy 2 + 4y 3y4
er-dimension solutions. The only thing we need to do
is to orthonormalize these solutions so that the initial dy2 /dt = - 2y 2 -

2 ylY2 + 4y 3 Y4

estimate of M satisfies the restriction of MM' = 1; . dy 3/dt = - 2Y3 - 4 Y3Y4 + 2 yY 2

Second, we can use the "expanded" invariant sub-
space corresponding to eigenvalues which are almost dy/dt - 2y, - 4y 3y 4 + 2y1 Y2 (106)
equal. In this case, any subspace in the expanded one dys/dt = - y5 + ksly, + 2y2 + 112Y6
is almost invariant to its original matrix. Therefore,
we can determine ' with higher dimensions. This dY6/dt = - -/2y6 + 2Y 3 + Y5
approach will be illustrated by the following dy7/di = - + Yi + Ya
examples.

dys/dt = - y, + 2Y4 + /y7

-2Y 2 - 1 - k1  - 2y2  2y2Y 2  k51  0 1 0
- 2y, - 2(1 + y,) 2y, 2y, 2 0 0 0
4Y4  4y4  - 2(1 + 2y4 ) - 4y4  0 2 0 0

jT(y) 
4 Y3 4Y3 - 4Y3 - 2(l + 2Y3 ) 0 0 0 2

- 1 1 0 0
0 1'2-\/2 0 0

0 0 /2V
0 0 1 -1

JT(y) can be represented as

6. EXAMPLES jr(y) = Ao + k k (107)
The method proposed in this paper will be illus- k=

trated by the following reaction scheme, where the Cs where

- k,, 0 0 0 k,, 0 1 0
0 -2 0 0 2 0 0 0
0 0 -2 0 0 2 0 0

A = 0 0 0 -2 0 0 0 2
-I 1 0 0

0 N/2 - 0 0
0 0 -2 \2
0 0 1 -1
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0 0 0 0 - 2 -2 2 2
-2 -2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A,- 0 0 0 0 A, 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 04 4 -4 -4

A 3 = 4 -4 -4 ,44 0 0 0 )

This information will be used in the examples below, have full sets of eigenvectors. Their Jordan canonical
forms are diagonal. The corresponding eigenvector

6A. Example I matrices XAk of Ak with their eigenvalues are now
Let k, 1 = 0.9. In this example, the algebraic and examined. Given below are the explicit eigenvalues

geometric multiplicities of any multiple eigenvalues and eigenvector matrices, with the eigenvectors dir-

for all A. (k = 0, 1, ... 4) are equal. Therefore, all Aks ectly below the listed eigenvalues.

., -1.9, -2, -2, -2, -(1 +,/-2), -(1 + ,F, 0, 0

1.0000 0.0000 0.0000 0.0000 - 0.2008 0.4555 0.2305 - 0.2759
0.0000 1.0000 0.0000 0.0000 - 0.5538 - 0.0528 0.4865 0.0327
0.0000 0.0000 1.0000 0.0000 0.7833 0.0746 0.4865 0.0327
0.0000 0.0000 0.0000 1.0000 0.0000 - 0.8333 0.0000 - 0.5537

X AO 0.0000 0.0000 0.0000 0.0000 0.1147 0.0109 0.4865 0.0327
0.0000 0.0000 0.0000 0.0000 - 0.1622 - 0.0155 0.4865 0.0327
0.0000 0.0000 0.0000 0.0000 0.0000 - 0.2441 0.0000 - 0.5537
0.0000 0.0000 0.0000 0.0000 0.0000 0.1726 0.0000 - 0.5537

;= - 0 0 0 0 0 0 0

0.0000 0.7071 0.4083 0.2887 0.0000 0.0000 0.0000 0.000
1.0000 -0.7071 0.4083 0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8165 -0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8660 0.0000 0.0000 0.0000 0.0000

XA1 = 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

;j -2 0 0 0 0 0 0 0

1.0000 0.7071 0.4083 0.2887 0.0000 0.0000 0.0000 0.0000

0.0000 -0.7071 0.4083 0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.8165 -0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8660 0.0000 0.0000 0.0000 0.0000

XA2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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j -4 0 0 0 0 0 0 0

0.0000 0.7071 -0.4083 0.2887 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.8165 0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8660 0.0000 0.0000 0.0000 0.0000
1.0000 0.7071 0.4083 - 0.2887 0.0000 0.0000 0.0000 0.0000

= 0.0000 0.0000 O . 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

-4 0 0 0 0 0 0 0

0.0000 0.7071 -0.4083 0.2887 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.8165 0.2887 0.0000 0.0000 0.0000 0.0000
1.0000 0.7071 0.4083 -0.2887 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8660 0.0000 0.0000 0.0000 0.0000

X 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Notice that any linear combination of the eigenvec- Arbitrarily choosing one Yk(ik) from each XA, one
tors corresponding to a multiple eigenvalue of Ak is can compose a five-member group. Then using eq.
still an eigenvector of it. The subspace spanned by all (100) the degree of coincidence d,(k, k') for any pair of
the eigenvectors corresponding to an eigenvalue of Ak Y(ik) and Yk.(i,,) can be computed. Let D, represent
is a root subspace and any subspace of the root one is the sum of all the de(k, k') in this group, i.e.
A,-invariant. Hence, there are an infinite number of 4

invariant subspaces for each Ak and we cannot exam- D,= d(k, k'). (108)
ine all of them. However, using the property of the k.k=0

k <k'

root subspace mentioned above, we can determine the
closest groups of the root subspaces, each ont of Comparing all the resulstant D, will yield the closest

which comes from an XAk (k = 0, l .... 4). These groups of the root subspaces for all Aks. Notice that in

closest groups can be used to choose some initial each group there are 10 pairs of Y,(ik) and Y.(i,) and

values of M with i not larger than the smallest dimen- the largest value of d, is 1. Therefore, the maximum

sion of these root subspaces. value of D, is 10. The first several closest groups with
the largest D. obtained by eqs (100) and (108) are given
in Table 1.

(1) Unconstrained lumping matrices. Let Y(i) rep- After the determination of the closest groups of the
resent the ith submatrix of X,, corresponding to the root subspaces for all A,, we can use eqs (101H104) to
ith distinct eigenvalue listed above each matrix XAk. find the initial estimates of M with different A. The
For example, the first column of XAo is Yo(I), columns first closest group of the root subspaces for all A, with
2-4 of Xo is Yo(2), etc. The columns of Y,(i) span D, = 9.9348 consists of Yo(3) and Yk(2) (k = I - 4).
a root subspace. For convenience, the columns are Yo(3) has two columns and other Y,(2)s have seven
taken as being orthonormal. Since - 1.9 and - 2.0 columns. Therefore, this group can be only used to
are very close eigenvalues of A0, the first four eigen- give the initial estimates of M with i = I and 2. The
vectors of A, are considered as spanning an expanded corresponding matrices Y for Ai = I and 2 can be
root subspace. Thus A0 is approximately regarded as obtained by eq. (102). Let Y(i) represent the matrix
having three root subspaces with dimensions 4, 2 and Y for the ith group in Table 1. Then one can computa-
2. Each of the other Aks has two root subspaces with tionally determine the eigenvalues t,; and eigenvector
dimensions I and 7. matrix R for the symmetric matrix Y. Similarly, we

Table I. Sum D, of degrees of coincidence for the largest groups

No. Yo(i) Y' (i) Y'(i) Y'(i) Y40() D,

I Yo(3) Y, (2) Y2(2) Y,(2) Y,(2) 9.9348
2 Yo(l) Y,(2) Y,(2) Y3(2) Y,(2) 9.0000
3 Y,(3) Y1(2) Y2(2) Y3(1) Y4(2) 8.5076
4 Yo(l) Y,(2) Y2 (2) Y3(1) Y4 (2) 8.5000
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use R(i) to represent the eigenvector matrix .R of Y(i). examine the two matrices R(I) and R(2) and their
From eq. (102) we know that the difference between corresponding eigenvalues.
the two Ys for A = 1 and 2 is a constant factor. For R(l) and A = 1, the largest value of S is A, = 5
Therefore, the corresponding R(l)s are the same. The and the first column of R(l) is the best initial estimate
resultant R(1) and the corresponding eigenvalues for of M', which is simply the trivial exact lumping

scheme:

M = (0.3536 0.3536 0.3536 0.3536 0.3536 .0.3536 0.3536 0.3536).

different A are as follows. The eigenvectors in R(I) are The second column of R(l) has S = A2 = 4.97 almost
arranged by nonincreasing order of their correspond- equal to 5. It is also a quite good estimate of M' with
ing eigenvalues. A = 1. When A = 2, the largest value of S is

0.3536 0.1407 0.1705 - 0.6837 0.3218 0.0000 0.0000 0.5053
0.3536 - 0.2668 - 0.6669 0.3414 0.0359 0.0000 0.0000 0.4907
0.3536 - 0.4142 - 0.2991 - 0.5027 - 0.3085 0.0000 0.0000 - 0.5152
0.3536 0.3599 - 0.1973 0.1604 0.6662 0.0000 0.0000 - 0.4874

R(I) = 0.3536 - 0.3405 0.4427 0.2426 0.0601 - 0.2695 0.6537 - 0.0123

0.3536 - 0.3405 0.4427 0.2426 0.0601 0.2695 - 0.6537 - 0.0123
0.3536 0.4336 0.0538 0.0997 - 0.4177 0.6537 0.2695 0.0156
0.3536 0.4336 0.0538 0.0997 - 0.4177 - 0.6537 - 0.2695 0.0156

A A 2  A3  4  A5 A6  A 7  A
8

1 5.00 4.97 4.00 4.00 4.00 4.00 4.00 0.03
2 2.50 2.49 2.00 2.00 2.00 2.00 2.00 0.02

For the second closest group with D, = 9.0, The
resultant R(2) of Y(2) with different A are also the A1 + A2 = 4.99. Therefore, the first two columns of

same. In this case Yo(l) has the smallest number of R(1) can be used to construct the initial estimate of

columns 4. Then we can only use R(2) to determine M' with h = 2. Other combinations of any two col-

the initial estimates of M with A from 1 to 4. umns in R(1) are not suitable for the initial estimates

0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.5000
0.5000 -0.5000 -0.5000 0.0000 0.0000 0.0000 0.0000 0.5000
0.5000 -0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 -0.5000
0.5000 0.5000 -0.5000 0.0000 0.0000 0.0000 0.0000 -0.5000

R(2)= 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

A Al A2  3  A, A6  A7  A8

1 5.00 5.00 5.00 4.00 4.00 4.00 4.00 1.00
2 2.50 2.50 2.50 2.00 2.00 2.00 2.00 0.50
3 1.67 1.67 1.67 1.33 1.33 1.33 1.33 0.33
4 1.25 1.25 1.25 1.00 1.00 1.00 1.00 0.25

Notice that in eq. (101) S is the sum of the degrees of of MT with A = 2, because the corresponding S is
coincidence between M' and all Yk(rk). Since there are considerably smaller t an 5.
only five Y,(rk) in this example, the maximum value of There are multiple eigenvalues in R(2) and hence
S is 5, which corresponds to Z, = 0. Therefore, 5 - S the solutions are not unique for different h. When
can be applied as a reference value of Z,. Now let us h = I any one of the first three columns or any linear
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combinations of them will give a good estimate of MT the smallest dimensions of the root subspaces in them
due to S = 5. Similarly, any two linearly independent are not larger than 5. However, we can determine the
combinations of the first three columns of R(2) should approximation of the simultaneously invariant sub-
give a 2 x 8 lumping matrix with S = 5. For the same spaces with low dimensions for all Ak in the same
reason, the first three columns construct an initial way, and then the orthogonal complements of them
estimate of M' with h = 3 and also have S = 5. How- will give the initial estimates of M with higher Ai. To
ever, in R(2) when we use the first three columns to save space we will not discuss them here.
construct initial Mr in different'll, even if S = 5 we This example shows that most of the unconstrained
cannot guarantee that they will give lumping matrices global minimum solutions, which are exactly lumping
with Z1 = 0. because Y0(l) is an expanded invariant matrices here, have been obtained by the present
subspace, and therefore we introduce some error, approach.
Nevertheless, they will give very small Z. In fact, the
following linear combinations of columns 2 and 3 and (2) Constrained lumping matrices. Now let us con-
I and 3 of R(2): sider the initial estimates of M under some con-

M = (0.0000 0.0000 0.7071 - 0.7071 0.0000 0.0000 0.0000 0.0000)

M = (0.0000 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000)

straints. Suppose a part of M is given such as

MG = (0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000).

give the exact lumping schemes. The combination of Using the approach presented in our previous paper
these two Ms also gives an exact lumping matrix with )n exact lumping, one can find that under this con-
h = 2: straint the exact lumping matrices have A higher than

M = (0.0000 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000)

0.0000 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000

This exact lumping matrix can be also obtained with- 4. For example the exact lumping matrix with A = 5 is
out using the approximation of the expanded root as follows:

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

M=I 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0000 0.00 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

subspace. Here we just want to illustrate the use of an In this case the system can be only approximately
expanded root subspace. The combination of the lumped by the lumping matrices, which contain M,
above three one-dithensional exact lumping schemes and have i less than 5. Thus we need to determine the
gives another exact lumping matrix with A = 3:

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
M = 0.0000 0.0000 0.7071 - 0.7071 0.0000 0.0000 0.0000 0.0000).

0.0000 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000/

After orthonormalization it becomes

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
M = 0.0000 0.0000 0.7071 - 0.7071 0.0000 0.0000 0.0000 0.0000).

0.2500 0.7500 0.2500 0.2500 - 0.2500 - 0.2500 - 0.2500 -0.2500

When A = 4, the first four columns of R(2) are not other part M,. Utilizing the resultant estimates of
a good estimate due to S = 4.75, which is significantly one-dimensional unconstrained lumping schemes
different from 5. We cannot determine the initial esti- from R(I. R(2) and M; gives the following initial
mates of M with higher ,i from these groups, because estimates of M with h = 2:

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000)\
-,0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536,
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0.0000 00000 00000 0.0000 0.5000 0.5000 0.5000 0.5000)

(0.5000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000)

0.5000 -0.5000 -0.5000 0.5000 0.0000 0.0000 9.0000 0.0000

(0.0000 0.0000 0.-000 0.0000 0. 0 000 0.0000 0.05000)

S0.5000 -0.5000o.ooo -0.5000 0.0000 0.00 0.5000 0.0000

=(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000)
k0.0000 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000)

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000).
M6  0.0000 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000)

Notice that after orthonormalization M, becomes
M 2 . All these matrices have SG = 2.00, S, = 2.50 and Using these matrices as initial estimtes of M with
S = 4.50. They were used as initial values of M with different and taking values of akk. and andkk(M) fromii = 2 and the best result was obtained by using M2 as eqs (89) and (92) we sol.ed eqs (40), (59) and (69)
the intial value of M. simultaneously by IMSL nonlinar equation system

eimilal us e e te of usolver ZSCNT. The value of Z 2 was chosen in such
Similarly usingthe estimtes of unconstrained two- w are acceptable. Notice that

dimensional lumping matrices obtained above and a way that both Zc and Z( x a b noie at
MG we can construct the initial estimates of M with eqs (40) and (59) contain n + , ) x h nonlinear alge-
A = 3: braic equations and eq. (69) has only one. In order to

/0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 05000
M =0.5000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

0.5000 -0.5000 -0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

0.0000 0.AA00 00000 0.0000 0.5000 0.5000 0.5000 0.5000
M,= 0.5000 0.5000 0,5000 0.5000 0.0000 0.0000 0.0000 0.0000

0.5000 -0.5000 0.5000 -0.5000 0.0000 0.0000 0.0000 0.0000!

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
M9 = 0.5000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000(0.0000 0.0C,00 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
Mo = 0.OOQO 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000.

0.0000 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000

After orthonormalization M 10 becomes M, 1 :

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
M, = 0.0000 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 0.8165 0.4083 0.4083 0.0000 0.0000 0.0000 0.0000/

All these matrices have So = 1.33, S, = 3.33 and force the solution to sitisfy rq. (69) we can multiply
S = 4.66. We cannot distinguish which is hetter. The this equation by a constant tn increase its .:ight in
best result was obtained by using M, as the initial this simultaneous nonlinear algebraic equation sys-
value of M. tem. The resultant approximate lumping matrices

For i = 4 we have the following initial estimate of validated in the whole composition region with differ-
M with So = 1.00, S, = 3.75 and S = 4.75: ent A and the corresponding Z, and Z2 are given

/0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0
=0.5000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 0.00001

M2 = 05000 -0.5000 -0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 "

\0.5000 -0.5000 0.5000 - 0.5000 0.0000 0.0000 0.0000 0.0000
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below:

2 3 4
Z i 1.67 x 10-2 1.65 x 10- 2 6.84 x 10 - 1

Z, 3.48 x I0' 2.91 x 10-' 9.61 x 10-

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000)
M= 0.4843 0.5101 0.5026 .5 )26 - 0.0012 0.0040 -. )072 0.0044)

/0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.500C 0.5000
M= 0.4839 0.5098 0.5029 0.5029 - 0.0013 0.0040 - 0.0073 '.0047

0.0000 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.t")o00

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000( 0.5211 0.4721 0.4913 0.5139 - 0.0052 0.0051 - 0.0030 0.003
M = 0.338 - 0.0186 0.7137 - 0.6994 - 0.0002 0.0002 - 0.0001 0.0001

- 0.6534 0.7188 0.0484 - 0.0033 0.0055 - 0.0076 0.0049 - 0.0028

Choosing M = A' " we obtain the lumped kinetic
equations from eq. (16). These lumped systems do not - 2.212411 X 10 49394 + 5.232053
follow uni- and/or bimolecular reaction schemes, but x 10-'p - 2.015318 x ,0 3 3
this causes no real difficulty for practical purposes.

+ 1.006234 x 10-392 (lll

Lumped kinetic equations with A = 2:
d911idt = 1.781619-9, d94 /dt =-1.091453 x 10-3j - 'o12915

=x 16-P2 9 2 -9.035070 x 10-33
d921/'de = 1.325483 x l0-39, - 1.82145192r = 1.3254180 x 10 2  

109)- 1.951685p, - 1.574803 x 10-3:93-2.415 ~1 0 -lO 2f'' 119
- 2.1510 x 1 (09)+ 2.906617 x 10- 2.J, + 4.313106

Lumped kinetic equations with A = : + 206617 101999 + 1061 0-sp9p - 1.019991 x lO-2f'
d9 /dr =!.735 + 3.928872 x 10-2p22

dP2/dt = 1.383473 x 10-91 - 1.97337692
- 1.961657 x 10 -'2 .

- 9.616696 x 10-' , - 6.340748
For comparisons the solutions of eqs (106) (origina I

X 10-9I + 2.446022 x I0- 2g 2  (110) model) and (IlI) (approximately lumped model) for

dP 3/dt = _ 2.000018P3 different initial values are given in Figs i 3. Table
2 presents the detailed numbers for 9, with one initial

Lumped kinetic equations with A = 4: condition to provide a quantitative comparison for

dp,/dt = 1.97236592 + 2.77395 x 10-293 A = 2, 3 and 4. The results are quite satisfactory for all
closen initial conditions. When A is larger, the accu-

+ 0.105221'4 racy becomes better. However, even ifA = ?. the error

d9 2/dt -. - 8.677774 x 10-4 1 - 1.97357392 is still quite small.

+4.623911 x 10-3 ' - 3.776060 6B. Example 2

x 10-294 - 9.661564 x 10-4293 The second example is the same system except that
5 1 0.1. In th:s case, the eigenvalues of A, are - 1.1,

+ 1.783237 x 10-92.t -2, -2, - 2, -(1 + V'2).- (0 + V 2), 0 and 0.

+ 2.646131 x 10-3 3 4 - .,.257743 We cannot ignore the difference between - 1.1 and

x 10- 3 , + 2.410400 x 10-29 -2. Therefore. the expanded root subspace crre-
S23 sponding to - 1.1 and - 2 cannot be used in this

- 1.203495 x 10- 2:, case. The other procedures are the same as in example
d t 3.935029 x 10-, + 1.755288 I. All the exact lumping schemes in example I can be

obtained in example 2. For the same M, as that of

x I03 - 1.999703. ,3  example I the resultant approximate lumring ma-
.72- 8.07963 trices validated in tae whole composition rc5 ion with

different A and the corresponding Z, and Z2 are given
x 10-' J, - 1.490951 x 10-6.,4 below:
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A 2 3 4
Z1  0.82 0.57 0.36
Z2 0.06 0.22 0.38

0.000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.2945 0.6025 0.5220 0.5222 - 0.0017 0.0271 - 0.0577 0.0324

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
M 0.3196 0.5953 0.5205 0.5199 - 0.0297 0.0259 - 0.0163 u.0201

0.8486 - 0.5237 0.0427 0.0304 - 0.0315 0.0301 - 0.0224 0.0238

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.39 0.4324 0.5427 0.4750 - 0.0334 0.0275 - 0.0130 0.19|

0.5304 - 0.4455 0.3710 - 0.6182 0.0080 0.0149 0.0101 - 0.0031

0.5537 - 0.4135 - 0.5877 0.4207 6.0029 - 0.0091 0.0069 -0.0007]

Lumped kinetic ecaations with i = 2: - 0.139489.939, - 2.618984 x 10-2.92
d9 /dr = 1.808!557Q92dd=1.0672(112) + 2,061659 x 10- 2.9

d9 2/ut 1.269979 x 10
2-9 - 1.8bO187.9 2  (

- 0.108259 - 2.461457 x 10-2 2

Lumped kinetic equations with ,i = 3: d =3/dt 2.002723 x 10-9 + 0.25129092

i9 1 /dt = 1.811499.P2 + 1.61235 x 10-2 93 - 1.75544793 + 0.27855894

- 0.?-5S.Y'2;3 - 7..05206 x 10-'9294
dP 2/dt = - 3.988877 x 10-' j - 1.90255292 (114)

+ 0.26125293 + 6.S70965 x 10-292.03 + 0.9996859394 + 0.1876972

-8.808404 x 10- 2-0.1121779 (113) - 0.14775493 - 0.17640792

d9 3/dt = - 3.183231 x 10-'P, + 0.253534., d 9/dt = 8.988434 x 10-'4, + 0.264633P2

- 1.33785393 - 0.131870-293 -- 0.2596769 - 1.712459PI

+0.176772912 + 0.22512393 -0.189171293 - 7.263547 x 1(-29 294

Lumped kinetic equations with i = 4: + 0.924388939, + 0.173559P2

dVidt = 1.74655692 - 0.401056S 3 - 0.275967.9 - 0.1366259 0.163120p2.

d9 2/dt = - 6.020594 x 10- 39 - 1.7292829: For "omparison the solutions of eqs (106) (original

+ 0.27604493 - 0.271043P4 + 2.854569 model) and (114) (approximately lumped model) for
different initial values are given in Figs 4-6. Table

x 10-29293 + 1.096059 x 10-2929 3 provie . a quantitative comparison of P, with one

Table 2. Comparison of solutions of P by eqs (106) and 0109H1 I1) [the initial
concentrations are y1 (O) = Y'4(0) = 0.5, others are zero]

Equation (106) Equation (111) Equation (110) Equation (109)
t (exact) (At = 4) (A = 3) (Ai = 1)

0.0 0.0000 0.0000 0.0000 0.00OU
0.2 0.1615 0.1614 0.1611 0.1472
0.4 0.2708 0.2706 0.2698 0.2493
0.6 0.3447 0.3446 0.3430 0.3202
0.8 0.3948 0.3946 0.3925 0.3694
1.0 0.4288 0.4284 0.4258 0.4036
1.4 0.4673 0.4667 04636 0.4439
1.8 0.4850 0,4842 0.4808 0.4635
2.2 0.4931 0.4921 0.4888 0.4731
2.6 0.4968 0.4957 0.4926 0.4778
3.0 0.4985 0.4972 0.4945 0.4802
4.0 0.4998 0.4980 0.4963 0.4825
5.0 0.5000 0.4978 0.4972 0.4834
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II i 

05 Y'

04 X

/
0 3 . " - solutions of Equation 106

0 4 0 solutions of Equation III

02 2

00
Y4

00 05 10 15 20 25 30 35 40 45 50

Fig. 1. Comparisbn between the solutions of eqs (106) and (111) [initial condition: Y 1(0)= y2(0)= 0.5,
others are zero].

05 Yl

0.4

0.3 solutions of Equation 106
0 o0o solutions of Equation 111

0.2

";7 0.1

0.0 ^2

-0.1 Y4

-0.2

-0.3

-04

0.0 0.5 10 1.5 20 25 30 35 40 45 50

t

Fig. 2. Comparison between the solutions of eqs (106) and (111) [initial condition: Y1(0) = Y4(0) = 0.5,
others are zero].

initial condition for different At. The error is larger constraints. This work shows that the analysis of
than example I. This is due to the larger change of k 1. approximate lumping is general and the suggested
From Figs 4-6 one can see that the approximate approach is applicable to other complicated reaction
lumping scheme in eq. (114) is quite good for the systems and other problems.
initial condition y, (0) = y4 (0) = 0.5, but is not as good
for other initial conditions. This is not surprising, 7. CONCLUSION AND DISCUSSION

because the lumping scheme is obtained in the whole In the present paper, a general analysis of approxi-
composition region. If we determine the lumping mate lumping is presented. Our previous exact lump-
scheme in a small region, the accuracy will be better. ing analysis was employed as a rigorous starting

From these examples one can see that the approach point. A general appro,.ch to construct the kinetic
presented in this paper is capable of producing exact equations of the approxiiately lumped system was
lumping schemes, when they cxist, as well as accept- developed. This method can be applied to any reac-
able approximate lumping ones in the presence of tion system or other kinetic systems described by a set

cES 45:m4o
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05 . . . . . .9

0.4

0.3 " solutions of Equation 106

a 0 solutions of Equation 11

02

0.1

0.0a a I -

-01 . I I I I

0.0 05 1.0 1 5 2.0 2.5 30 3.5 40 45 50

Fig. 3. Comparison between the solutions of eqs (106) and (111) [initial condition: y,(0) = y'(0) 0.5,
others are zero].

05 025

04

0.3 b t solutions of [ti Equation 106

fmlt t o r o tluion g of Equation a14
02 2

0 1' Y

0 0 Y3

0.0 05 ari 15 20 25 3 35 40 45 50

Fig . h Comparison between the solutions of eqs (106) and r 14) (initial condition: Y(0)= Y2a(0)= 0.5,others are zero].

of first-order ordinary differential equations with ar- or bimolecular reaction schemes and other restric-
bitrary nonlinear coupling. tions, a good choice of the generalized inverse of the

The observer theory initiated by Luenberger was lumping matrix is the it, 2, 3, 4}f-inverse. When the
formally employed to obtain the kinetic equations of rows of the lumping matrix are orthonormal, it is
the approximately lumped system. These kinetic simply M r .
equations have the same form as that of the exact Using the results of our exact lumping analysis the
lumped one. The difference between the approx- equations were derived which can be applied to ob-

imately lumped kinetic equations and those of an tain the approximate lumping matrices with or with-
exactly lumped system is that now the equations are out physical constraints. These equations can be
dependent on the generalized inverse of the lumping employed to determine the approximate lumping
matrix. If we are only concerned about the error and schemes in the entire composition region or only in
do not require the lumped system to follow uni- and/ a small region of it, or even along a reaction path. The
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05 1 
Y l

04 0 "

0.3 .:. ." - solutions of Equation 106
( " 010X ,, oAo solutions of Equation 114
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0 1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 40 45 50

t

Fig. 5. Comparis6,n between the solutions of eqs (106) and (114) [initial condition: y1 (O)= Y4(0)= 0.5,
others are zero].

05 Yl^__ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _

0.4

0.3 - solutions of Equation 106

6- o I solutions of Equation 114

02

01

0.0 .y 3 .Y 4

Y2

-0 1
0.0 0.5 1.0 15 20 2.5 30 3.5 40 45 5.0

Fig. 6. Comparison between the solutions of eqs (106) and (114) [initial condition: ys(O) = y,(O) = 0.5,
others are zero].

equations are invariant to the different regions of the modified from a case of exact lumping was employed
composition region, but the parameters in the equa- to examine this method.
tions depend on the region; especially for a reaction The approach presented here for constructing the
path, they depend on the initial value y(O). The equa- approximately lumped kinetic equations is quite gen-
tions to calculate these parameters were presented. eral. It is applicable to many reaction systems or other

In order to reach the global minimum solutions of problems, such as in chemical engineering, control
the equations an approach to choose suitable initial problems or even classical molecular mechanics.
M values was developed. This approach is based on However, this method is specifically suitable for uni-
the concept of the degree of coincidence between the and/or bimolecular reaction systems, because the
invariant subspaces of Abs. A global minimum solu- transpose of the Jacobian matrix of these systems is
tion is located in a subspace spanned by the basis readily decomposed into a certain linear combination
vectors of the set of A,-invariant subspaces with the of constant matrices. For other systems we need to
largest sum of degrees of coincidence. An example find an easy way to do so. The same problem also
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Table 3. Comparison of solutions of PIt by eqs (106) and (1 12H 114) [the initial
concentrations are YA(0) = Y4 (0) = 0.5, others are zero]

Equation (106) Equation (114) Equation (113) Equation 1112)
t (exact) (A = 4) (A = 3) (h = 2)

0.0 0.0000 0.0000 0.0000 0.0000
0.2 0.1318 0.1315 0.1305 0.1227
0.4 ;e" 0.2267 0.2268 0.2246 0.2065
0.6 0.2955 0.2963 0.2929 0.2640
0.8 0.3458 0.3470 0.3429 0.3035
1.0 0.3829 0.3843 0.3798 0.3308
1.4 0.4312 0.4323 0.4272 0.3631
1.8 0.4587 0.4590 0.4543 0.3792
2.2 0.4747 0.4739 0.4693 0.3878
2.6 0.4843 0.4822 0.4778 0.3929
3.0 0.4902 0.4867 0.4824 0.3963
4.0 0.4968 0.4899 0.4862 0.4022
5.0 0.4990 0.4887 0.4856 0.4073

appears for nonisothermal reaction systems, whose

rate constants are functions of temperature. There- D defined,. dAk, k')k~k' = 1

fore, refining the present approach to stronger non- k

linearities is an important task. k integer
When the dimension of the original system is high, I integer

the determination of the initial values of the matrix m integer

equation for M becomes very expensive by using the mk (k, I)-entry of M

degree of the coincidence of the invariant subspaces of 1# subspace

Aks. This restricts the application of the present ap- WE'(r) subspace with dimension r

proach. Fortunately, we will prove in another paper n dimension of vector y

that the necessary and sufficint condition for exact A dimension of vector

lumping validated in the Y.-space is only the invari- r integer

ance of .M' to JT(yj without the requirement of the s trajectory, length of the reaction path in

equality of the eigenvalues of ff to JT(y) and Jr(Q composition space, dummy variable or

My), or alternatively the representation in eq. (19). an integer

This reduced requirement simplifies the determina- sf final value of the length of a reaction path

tion of the approximate lumping schemes. We have S sum of degrees of coincidence

accordingly developed an easy way to determine the S defined as max tr MG YMG
constrained lumping schemes validated in the Y.- MG= I

space. The resultant M can also be employed as an
initial value of the matrix equations to find the ap- Sdeid = t D

proximate lumping schemes in any desired region. S, n-component kinetic system

Acknowledgements-The authors acknowledge support from $2 a-component kinetic system driven by S,

the Office of Naval Research and the Air Force Office of t time
Scientific Research. Yk kth element of vector y

Y. n-dimensional composition space

NOTATION Y; A-dimensional composition subspace
mT

Scalars Z t  total error defined as tr akk.MA[
ak(y) kth coefficient of the decomposition of (I - MTM)AkMT k.k'= I

JT(y) M

Z2  total error defined as tr Y Alk (M)a. defined a y &(Y.d

MAT Ak, M r
pk

Z" objective function
bki,(M) defined as j a,(y)a&.(z) dfl Z, deie asntron

J Z2(y) defined as tr [Er(y)E 2 (y)]
PT

ckk.(M) defined as fn a (z)a (z) dQ Z(0, y) defined as tr CEt( y)EI(, y)]

c upper limit of total concentration Vectors and matrices

Ci ith species of a reaction system Capital letters represent matrices, bold-face lower-
d, degree of coincidence of two subspaces case letters represent vectors.
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A constant matrix fi defined as RMfl
A0  constant matrix 4oal defined as u f=o i Mfo
A, constant matrix
B constant matrix Symbols
e, unit vector with I as its ith element, and any property related to the lumped sys-

0 foi the rest of the elements tern
e(y) error vector .1 . * any property related to stable state
E,(y) error matrix defined as (1, - frM T) ® Kronecker product of matrices

jr(y)MT 0 null vector
E, (M, y) error matrix defined as, (y. - MT T) 0 null matrix

jT(y)MT with a given M

E2(y) error matrix defined as M[J(y)
- J(MMy)]

f(y) n-dimensional function vector REFERENCES

f(9) A-dimensional function vector Bellman, R., 1970, introduction to Matrix Analysis.
F(X) function matrix McGraw-Hill, New York.
G(X) function matrix Ben-Israel, A. and Greville, T. N. E., 1974, Generalized In-

verse: Theory and Applications. John Wiley, New York.
H permutation matrix Golikeri, S. V. and Luss, D., 1972, Analysis of activation
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z defined as MMy APPENDIX A: DERIVATION OF EQ. (54)

In order to determine the M which gives the smallest error,
we need to minimize the function Z' with respect to M r and
A2j (for all i and j). This means that we need to solve the

Greek letters following equations:

at  constant vector 0Z'/i1MT = 0, (A 1)

#l.(M) defined as akj,. - bk,.(M) - b,,.(M) eZ'/jA = 0 (for all i andj)

+ ck, -.(M) where the function Z1 is
6ij Kronecker delta function with value I for

=j, 0 for i #j Z, = tr Y akMA,'( - M T M)A M r

ith eigenvalue of matrix A, or Y k.h= I

A Lagrange multiplier matrix with A,, as its + bi) mm 1, - j. (A2)
(i, j)-entry ,.i -i ,

f desired region of Y,-space and A,1 are Lagrange multipliers. The first equation of eq.
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(AlI) can be written as follows: and

[M aG(M r)/OM r = a(MA, M r)/aM r
OZI8MT' 1 a, I-L tr(MA[TA,.M T

)
k~* P~MT=a ~(;0 Ak MT j +

- _M tr (MA, k J) = H(I e)A,,M T) + (A T®I) 1)(M 
T 

0I1)

+ - -6, (A3) = H(I;®A,.MT) + (AM ;. A9
aM1~.~ 1 Substituting eqs (AP7) and (A19) into eq. (A14) we obtain

Since this equation involves the derivatives of a matrix with Z.aT=[H;(9AMT+
respect to a matrix, we state some relevant results (see any k (Ai~ M [H4A T + 9 1AM®;)]
textbook on matrix calculus), which will be used in the x (; l9 MA, M 1)
following calculations.

(1) OF[G(X)]/8X = [OG(X)1OX] [aF(G)/OG] (A4) +[(;()AMT ArMT()1)

(2) O[F(X)G(X)]IOX = [OF(X)/tOX)(I,® G(X)] x(AMO;

+ [aG(X)/aX][LF
T (X)® I,] (A5) k (;AM T ~ T

(3) atr(AX)/8X = A T  (A6)+(A TgM, r

(4) atr (XT AX)18X (A + A T)X (A7)+ (AMT(9kMT
+ (AI.MTMAMT®&I.;). (A20)

(5) vecA =(a, I 12  a, a1 02, ... a, )T (A8) A

(6) vec (AXB) = (A(&B T) vec X (A9) Then substituting eq. (A20) into eq. (A13) gives

The symbol 0 denotes a Kronecker product and F(X), OtrZUIaM
T 

=H(I(&A[MT MAk.MT) veci;

G(X) are p x q and q x r matrices, respectively. + (AMT®2)MA,.MT) vec!1;
We will determine each term of eq. (A3) separately. Let

A T[k. AO + H(MAkMTOAk,MT) VeC!I;

+ (ATMT MAkMT®I;) vecI;
Using eq. (A7) we obtain k

Tt( AA.M T)I8M ( M T H = vec (A TMrMAk.MT)T

=(~~.+A[A)M. (Al + vec (A, MTMAAT.MT)

Le +Hvec (MA, M TMA T)

Z~ -MAMTA.M. A1)+ vec JA TM
T MA iM T)

Ti~cn Representing this result in the form of matrix we obtain

trZ,/M'-azk a atr Zkk a tr Z,,aMT = A[TMT MA,,MT + A, MTMA[TMT

at ,IM MT aZ,. + AAMTMATMT + A[TMTMA MT.

az" (A21)

a :vec 1;. (A 13) For the last term in eq. (A3) we first consider differenti-
ation with respect to the element mi, of M:

aZkI, I/OM
T 

= a(MA TMT MA,,MT)/aMT

[F(MT)G(M)/M am-m, -i =2

= F (MT) [;G(MT)l =. 2m121  (A22)
aMT

(MT) where m,, represents the Ith column of M and 2;k''''l)(14 2 .~T eew ue h rpryo =, i ,, he

mT the differentiation of the last term with respect to MT' can be

where described as follows:

F(M T ) - MA TMT (AI5) a MT A3

G(MT) = MA_. MT. (A16) S k$ I

Utilizing the appropriate equations of matrix calculus we where A is the matrix whose 'i, j)entry is2.

can determine all the terms in eq (A 14): Substituting all the results into eq. (A3) gives

aF(M T)/aMT =. a(MA TMT/M za T
= ~ a.AA ~~-AMM

aM TIM aaAIOM T T.

CMT(®AM + 1 - AAMTMAA - A,.M TMA[T

=H(I;( ®ATMT ) + (A 9I;) (M T®I9;) - Aj T  
1M T  + 2 TA

H(I;(9A TMr) + (A, MT®Il;) (A17)
& =- 2 Y_ al,,.(ATA,. - A TM

T MA,
where H is known as a permutation matrix satisfying k~k - I k

vec MT - vecM (A 18) - AkMTMA T)mT . 2MrA = 0.
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This gives the following equation: eq. (BI) in this case we have

a,.(ATA, - A[M TMA,= -tr [Y(r') r Y(r)Y(r)Ty(r)]

k.kC I r

-AM TMA[)MT + MTA = 0. (A24)=1
- Y(r)T Y(r),]V

Now consider the differentiation of Z, with respect to A. It r ,= j
is easy to show that the result is

ZiaA = MM T 
- l= O. - = [aT Y(r)T Y(r)] 2

This gives the restriction condition:

MMT = I. (A25) "i

Multiplying both sides of eq. (A24) from the left by M we = j)2
obtain r' ,_

-1

. a,.M(A[A. - A[MTMA, r',=1

k.k =l 1

-AMMA)M T + A =0. =-r'=1 (B4)
r

Therefore A can be expressed as where e is a unit vector with its ith element 1, the rest 0, and

% 2, is the jth element of a,.
A =- ~ ak.M(A[A - A[MrMA . As another case consider the two subspaces as being

k.k' = orthogonal to each other. In this case, we have

- AMTMAkr)MT. (A26) Yr' )T Y(r) = 0. (B5)

Substituting it into eq. (A24) we obtain the final result: The degree of coincidence between these two subspaces is
as I " ' I "F "(1,- MrM) a.(ArA. - ATMTMA. d,=- [Y(r')f Y(r)] 2 = = 0=0. (B6)

kX = I r = j=1 r lj= I

- AMTMAT)M r 
= 0, (A27) In general we can prove that the degree of coincidence oftwo arbitrary subspaces is between 0 and 1. Notice that the

which is eq. (54) in the text. sum of the degrees of coincidence between vector Y(r'), and
all columns of Y(r) can be obtained as follows:

Y(r')T Y(r) Y(r)T Y(r'), = Y(r')T (I. - WW
T ) Y(r'), (B7)

APPENDIX B: THE DEGREE OF COINCIDENCE BETWEEN where Wis an n x (n - r) matrix, which is orthogonal to Y(r)
TWO SUBSPACES and its columns are orthonormal. We know that for an n x n

We need to give a quantitative description of the degree of symmetric matrix A

coincidence between two subspaces. We use d, to represent it. max x TAx = A, (A) (B8)
According to the geometric concept, when one of the two lxi = I
subspaces is inside the other one, d, is unity; when the two mi XTAx = .A) (B9)
subspaces are orthogonal to each other, d, = 0. In other I = I
cases, 0 < d, < I. d, should also be independent of the bases where , (A) and A,(A) are the largest and the smallest eigen-
for the two subspacd. values of A (Bellman, 1970). We also know that for a non-

Suppose (r) and (r) are r- and r'-dimensional sub- egative definite matrix the eigenvalues are nonnegative.
spaces, respectively. We choose corresponding r and r' or- Y(r) Y(r) is nonnegative definite, so its eigenvalues are equal
thonormal vectors as their bases. Let the n x r and n x r' Yr lrge is n one Ti dens ts a u
matrices Y(r) and Y(r') be the matrix representations of the
two subspaces with r' < r. If the degree of coincidence d, of Y(r') r Y(r) Y(r)T Y(r'), > 0.
the two subspaces is defined as follows:

I dc - Y - Y(r')rl Y(r) YOrT Y(r'), > 0. (1310)

d, tr [ Y(r')r Y(r) Y(r)r Y(r')] (B 1) =

Considering that Y(r) Y(r)T, 1, and WWT are all nonnegative
we can prove that d, satisfies the above requirements. definite, 1. and WWT can be diagonalized simultaneously,

First, when one of the two subspaces is inside the other and
one, i.e. the basis vectors of a subspace are certain linear
combinations of those in the other subspace, we can prove Y(r) Y(r)T = 4 - WWT (BI 1)

that d, is equal to unity. In this case the columns of Y(r') are so we have
linear combinations of those of Y(r), and then we have

Y .,(2)~[ Y(r) Y~rj r ] - k(I) - A.( wwr). (BI2)
Then the eigenvalues of Y(r) Y(r)T must be equal to or less

where Y(r'), is the ith column of Y(r') and x is a r-dimen- than the eigenvalues of 1 which are equal to I. Thus
41 sional vector. Since Y(r'), is normalized, then

I'
Y(r')f Y(r'), = a Y(r)T Y(r)a, d,= Y(r') . Y(r) Y(r)T Y(r'), < - I. (B13)

= *==I. B3
Ij = I. (B3) We can also prove that the resultant degree of coincidence

This shows that a, is also a normalized vector. According to is independent of the choice of the basis vectors if these
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vectors are orthonormal. Suppose k (r) is another choice of Then the degree of coincidence for the new choices of the
Y(r), then we have orthonornial bases is

P(r) = Y(r) P (B 14) 1
d,='tr[y (r)T f(r) k(r)' f(r')]

where P is a r x r constant matrix. Considering Y (r) as also r
being orthonormal. it follows that =It r rTf(' r)

f(r)
T 

F(r) =P
T 

Y) Yr r'

A P 1,. (115)= I tr [Y(r) Y(r) T Y(r') Y(r l']
This implies that P is an orthogonal matrix. Then we have rI

f () k(r) = ~r pp Y~)T Itr[Y(r')T Yfr) Y(r)T Y(r)]. (1318)
= Y(r) Y(r)T . (B 16) r

Similarly, if 1(r') is another choice of Y(r'), we also have This result shows that the degree of coincidence is inde-
pendent of the choice of orthonormal basis vectors. There-

-r)(r) Y(r')Y(r')T. (1117) fore we can choose them arbitrarily.
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Abstract-Two new approaches to the determination of constrained lumping schemes are presented. They
are based on the property that the lumping schemes validated in the whole composition ,-space of y are
only determined by the invariance of the subspace spanned by the row vectors of lumping matrix M with
respect to the transpose of the Jacobian matrix J T(y) for the kinetic equations. It is proved that, when a part
of a lumping matrix M. is given, each row of the part of the lumping matrix to be determined, MD, is certain
linear combinations of a set of eigenvectors of a special symmetric matrix. This symmetric matrix is related
to M' and AM', where A, are the basis matrices of J(y). It is shown that the approximate lumping
matrices containing M, with different row number i (A < n) and global minimum errors can be determined
by an optimization method. Using the concept of the minimal invariant subspace of a constant matrix over
a given subspace ohie can directly obtain the lumping matrices containing M, with different h. The accuracy
bf these lumping matrices are shown to be satisfactory in sample calculations.

1. INTRODUCTION The exactly lumped system can be described as
Recently a bunch of papers on lumping have been dt/dt = Mf(R,). (5)
published (Ho and Aris, 1987; Coxson and Bischoff,
1987a, b; Astarita and Ocone, 1988; Chou and Ho, Here we will demonstrate that, when the lumping
1988, 1989; Astarita, 1989; Aris, 1989). These works scheme is valid in the whole composition Y-space,
deal with both the discrete and continuous reaction this necessary and sufficient condition can be simpli-
systems. Our previous papers (Li and Rabitz, 1989, fled as follows. A reaction system is exactly lumpable
1990) presented approaches to exact and approximate in the whole composition Y,-space if and only if the
lumping for a reaction system in a desired region f0 of transpose of the Jacobian matrix J T(y) of fQy) has
the composition Y,-space. The original reaction sys- nontrivial fixed invariant subspaces A'. This result
tem with n-components can be described by will greatly simplify the determination of exact and

approximate lumping schemes because the examina-
dy/dt = fly) (1) tion of the equality of the eigenvalues of . for J T(y)

where y is an n-composition vector: f(y) is an arbitrary and J T(,My) is quite complicated.
n-function vector, wich does not contain t explicitly.
If the system can be exactly lumped by an h x n real 2. THE CONDITION UNDER WHICH A REACTION
constant matrix M with rank h (h < n), then for SYSTEM IS EXACTLY LUMPABLE IN THE WHOLE

9 = My (2) COMPOSITION Y.-SPACE

In our previous papers we have proved that theinvariance of M? to JT(y) is a necessary condition for

dt/dt = 1(9). (3) the existence of exact lumping in any region l. Now
we will prove that this condition is also sufficient

In the previous work a necessary and sufficient condi- provided that £ is the whole composition Y-space.

tion for the existence of exact lumping was established Suppose the transpose of the Jacobian matrix J (y)

as the following. A reaction system is exactly lump- of fSy) has a nontrivial fixed h-dimensional invariant

ab le if an d o n ly if the transp o se o f the Jaco b ian m atrix sub s a no tw i al th e d h - m atri x rep esentati o
subspace ..A' with the (n x n)-matrix representationJr(y) of f(y) has nontrivial fixed invariant subspaces MT for all y in the Y,-space. Let the orthogonal

,W and the corresponding eigenvalues of .' for J T(y) direct complement of ffi' be -V in Y, with the
and J r(, My) are equal for all y in the desired region [n x (n - A)]-matrix representation being X. In order
(, where MT is one of the matrix representations of to simplify the discussion we choose two sets of or-

.' and Q is one of the generalized inverses of M thonormal bases for iiand , i.e.

(Ben-Israel and Greville, 1974) satisfying

MR = 1;. (4) MMT=b (6)

XTX = In_ (7)
'Author to whom correspondence should be addressed. MX = 0. (8)

CS 4,t-4 95
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Therefore, the matrix (XIM T) is an orthogonal one (j = 1,2,. .. , n - h). Hence, the last h equations in

and its inverse is just the transpose of itself: XT eq. (12) compose an exactly lumped model.
a M )f Now we will demonstrate that this lumped model

Then we have can be represented as

(XMT)(XIMT) = MX T(IIXT) , (9) d$/dt = Mf(M5). (18)
,.)-,tw.. -(.M)/ Let

For the following nonsingular linear transformation = My. (19)

z= M Y (10) From eq. (12) onehas

d /dt = Mf[(X IMr)z]. (20)
we have the inverse transformation Taking into account that these equations do not con-

y = (XIMr)z (11) tain z, (j = 1, 2, . . . , n - h) and considering eq. (10),

and eq. (20) is equivalent to

(X r  d'/dt =Mf[(OIM T )z]

M = Mf(M Tr). (21)

(XT) Multiplying eq. (1) from the left by M and comparing
= fthe resultant equations with eq. (21) yields

(Xr) Mf(y) Mf(Mr')

M = Mf(MTMy). (22)

= g(z). (12) This holds for any value of Y E Ye . Therefore, we can

The corresponding Jacobian matrix of g(z) is take

J(z) = a M{ f[(XIMT)z z then (23)

=X T \ f ay Mf(M ) = Mf(M T MfIj)

-,M y Y) = Mf(Mrfj). (24)

= (XT) J~y),XIMT) Substituting eq. (24) into eq. (2 1) gives eq. (18).
AMf Y l In summary, we have proved that a system is

= [xrj(y)x XrJ(y)Mr exactly lumpable in the whole Y-space if and only if
MJ(y)X MJ(y)MT.. (13) the transpose of the Jacobian matrix JT(y) off(y) has
Mj(y)X MJ(Y)MT J' nontrivial fixed invariant subspaces -A' for all yE Y.

When the subspace .A spanned by the row vectors of The lumping matrix is one of the transposes of the
M is a fixed ipvariant one of J '(y) for all values of y in matrix representations of #. The important issue is
Y., i.e. a left fixed invariant subspace of J(y), we have that the lumping scheme is valid in the whole Y-

space. Otherwise, the conclusion would be invalid. In
MJ(y)---Q(y)M (14) the previous paper (Li and Rabitz, 1989) on exact

where Q(y) is an (i x )-matrix and lumping example 2 of a uni- and bimolecular reaction
system is a demonstration of this result. In that

MJ(y)X = Q(y)MX = 0. (15) example we did not give any restriction on the value

Then eq. (13) becomes of y, i.e. C1 is the full Y-space. The eigenvalues of J T(y)

and J T(RMy) for any one of the resultant 23 types of
J(z) J(y)M (16) the fixed JT(y)-invariant subspaces are equal.

Since the transformation in eq. (10) is nonsingular and 3. THE DETERMINATION OF CONSTRAINED
applicable for all values of ye Y, this implies that its APPROXIMATE LUMPING MATRICES IN THE

image is valid for all values of ze Z.. Thus from WHOLE COMPOSmON Y-SPACE

eq. (16) we have An approach to the determination of constrained
ag'(z)/OZJ = 0 (17) approximate lumping matrices has been presented (Li

and Rabitz, 1990). That approach minimizes the two
(i = n - t + 1, n - t + 2 ....... .n; errors corresponding to the invariance of A to Jr(y)

j 1, 2, .n - i) Vz c Z.. and the equality of the corresponding eigenvalues of
.1 . Ar for J(y) and JT(MMy) in f. Two problems arise in

Equation (17) shows that g,(z) (i = n - Ai + 1, n - i the determination of the approximate lumping ma-
+ 2, ... , n) do not contain the first n - h variables zi trices: (I) it is not easy to minimize the second error
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ior the equality of the eigenvalues simultaneously with J r(y) can be decomposed into a linear combination of
the first error, and (2) for large n and i the determina- appropriate constant matrices A, (k = 1, 2.
tion of the initial values for iteration of the matrix i.e.
equations determining M is a time-consuming task.
When the lumping matrix is valid in the whole Y.- jT(y) = a,(y)A5  (30)
space, we only need to consider the first error for the k I

invariance of oV. Taking advano,,of this situation where m is less than n2. If y can take any value in the
we now develop a new optimization approach to whole Y.-space, it is reasona, le to expect the coeffi-
determine the constrained lumping matrices without cients a,(y) to take on any real number, or at least
solving the matrix equations. It will be shown in approximately so, and then Aks can be treated equally
Section 3A that the new approach is much better and with(,ut consideration of these coefficients. Thus the
easier than the original one to obtain the solution of determined J -hould be as nearly all A-invariant as
M having the flobal minimum error. However, in possible, suggesting that the total error Z can be
numerical calculations, especially for large n and h, it simply defined as
can be a very difficult task to reach the global min-
imum. On the other hand, given the approximate Z = tr Y MAT(I. - MTM)AAMT. (31)
nature of the lumping goal, some error is acceptable. k=1

Therefore, in Section 3B we develop a direct ap- The problem then becomes
proach, which can determine the constrained approx-
imate lumping schemes with satisfactory accuracy. M T

This direct approach is built on the concept of the k= 1
minimal Ak-invariant subspace .#' over a given sub- subject to MM r = 1. (32)
space -G. This approach will directly supply the
constrained lumping matrices with different h. In the For the constrained lumping problem the lumping
simple examples of the present paper, when i is large, matrix M can be represented as
the resultant lumping matrix coincides with the solu-
tion having the global minimum error given by the M=( ) (33)
first optimization approach in Section 3A. MD

where M, is given and also required to satisfy
M0 M r 

= l _,; M, will be determined and satisfy
3A. The determination of constrained approximate M M=l,(whereristherownumberofMD)aswell.

lumping matrices with global minimum error Then we have
In this section we will present an optimization

method to determine the constrained lumping matrix Z =tr ( .A[(I - rm
with the global minimum error of the invariance of k=1 \MD)

A' to Jr(y). It is not necessary for the new optim-
ization method to solve the matrix equations deter- _ MrMD)Ak( GrD (34)
mining M and consequently to choose an initial value
forUsing the property of the trace of a ymetric matrix,

Since we only consider the invariance of #. when eq. (34) can be decomposed as follows:

MI satisfies the condition Z M A(l -

=~ - MGM - MD)A,~

MM T = I; (25) k=l

the best choice of Q is MT(Li and Rabitz, 1990). The + trMG A[lI - MGMG)AMG
approximately lumped system can be described by k

d/dt = Mf(MT). (26) - trMG ATNILAIA I

In order to determine the approximate lumping k= I

m atrix we need to m inim ize the error = tr. oI .. *4[(J , _ r
k .GtMG - Dro )A, D

Z(y) = tr[ET(y)E(y)] Vyc Y, (27) k=1

where as shown previously -A- trM T Arij(- lNIAI 6 )AM

E(y) = (1, - M TM)JT(y)MT
.  (28) k-I

Then we have - trMo " t MI, , A/ MT. (35)
5=l

Z(y) = tr[ET(y)E(y)] Notice that the three matrices on the right-hand

= tr [MJ(y)(i, - %jrMI(I - rMI)J r(y)M rI side of eq. (35) are all nonnegative definite. Therefore

= tr MjMJ(y)( _ V ~4 TI 4)j T(Y(4j r]. (29) regardless of the chosen i 0 , the first two terms are
nonnegative and the last term is nonpositive. This

Again following the previous work on exact lumping, observation suggests finding the M, such that the last
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term has the largest magnitude, thus subtracting from our previous paper (Li and Rabitz, 1990), i.e. the
the first two terms as much as possible. It is well 'gree of coincidence of ./I and the image of it upon
kno',n that symmetric matrix has a full set of Jr(y) According to the definition of the degree of
orthogonal cigenvectors. Since M, must satisfy the coincidence, each subspace must have an orthonor-
restriction mal basis. Therefore, if we use eq. (28) to --!present the

deviation of the invariance of. 1 to j T(y), we need to
transform the matrix JT(y)M to an orthogonal one.

T T When we use eq. (34) to describe Z. we also need to
the r eigenvectors of tile matrix A, M M, A with orthonormalize .e matrix Ak(MTMF). Similarly.k F

k=1

the largest sum of their eigenvalues solve the problem when we dete re Y(l), we need to orthonoraalize

posed above and the sum is ju ;t the magnitude of the the matrix Ak M. Let Qr, Q(G) and Q(Dk repres-

last term in en.(35) . 1970). Meanwhile, M, ent thc orthonormalized matrices AMT, AkM r and

must satisfy ano3ther restriction: A, ALD, respectively. Then eqs (31) and (34) can be
revised as

MDMA = 0. (37)

This restriction can be realized from determination of Z = tr Y Q1k1(1, - MM)Q() (41)

the eigenvalues and eigenvectors of the matrix o

Z tr Q(G) k (l _ MTM._ MT + CMTM-- MrMD)Q(G)rk
Y(1) = M AkMrMA r + cMGMG (38) k=

,= I

where c is a positive constant. Since the columns of + tr Q(D)k)(,,. - MDM)Q(D)),.
MT are eigenvectors of the matrix cM 'M, when c is k=

large enough and the eigenvectors are arranged in the (42)
nonincreasing order of their eigenvalues, the first Similarly, in eq. (38) we need to orthonormalize

e- r igenvectors of Y(l' can be as close as possible AkMr:

to MT and the other eigenvectors are orthogonal to it.
Therefore, the latter r eigenvectors of Y(1) are a good Y(I) = Y() YQ( k(G()+ cMM' (43)
choice to represent MD, because the result gives the k=1

largest magnitude of the last term in eq. (35) under the It is well known that the minimal A.-invariant
restriction of eq. (37). However, this choice of MD will subspace # over a given subspace _# coincides with
not definitely give the smallest values of the first two .-

terms in eq. (35) and consequently Z. Considering tlt h AL#G, where s is the rank of Ak, and A° =
MD needs to satisfy eq. ,37), then each row of MD must j= 1

be a linear combination of the last n - h + r eigenvec- (Gohberg et al., 1986). Equation (43) only contains &G k

tors of Y(I). Let these n - h + r eigenvectors compose and AkAAG, so it does not give the whole picture of the

the matrix X. When the eigenvalues of Y(1) differ very invariance of _ *o all A, When eq. (43) is used to

M', which gives the smallest Z, most determine MD with higher r, the solution probably is
probably are linear combinations of the first a fstv certain linear combinat ons of all columns of X. This
columns of X, because the other columns can only comment arises because in this case the first few col-

columns oft spabecausemthestotherlcolumnslcan only
yield a very small value for the last term in eq. (35). Let umns do not span the smallest simultaneously all A,-

invariant subspace over #G. The details can be found
M r = XP t39) ir. Section 3B. If this happens, then this approach will

where P is an [(n - h + r) x r]-ma*rix. Taking ac- loose it; advantage. In order to overcome this prob-

count of eq. (36) we obtain lem, one can determine M, from lower r to higher r in
a step-w:se fashion After M, at lower r has been

MDMr = pTXTXp = pTp - , (4o) obtained, one can use (MGMo) to construct the first
term of eq. (43) again. This just adds terms of A 1,

This implies that all columns of P are orthogonal and Then M, at higher r can be determined by the new
normalized. Hence, the magnitude of each element of Y(I).
P is equal to or less than unity, which simplifies the After the determination of the c'.-,vector matrix
determination of it. Usiro any of a variety ofavailat!L R(l) of Y(l), we can use the IMSL , tine ZXMWD
programs (say, the IMSL routine ZXMWD for deter- to determine P and consequently M by minimization
mining the global minimum with the presence of con- of Z under the constraint that the elements I Pj I < 1,
straints) the resultant X will letermine P and conse- This optimization approach does not need the initial
quently M,. values for P1 . Therefore. in principle, it can be used for

In practice we cannot directly use eqs (34) and (38) lumping problems for any dimension. However. only
to determine Z and Y(I). This comment i i''ws owing when the number of the unknown parameters to be
to the nonexactness of eq. (28) to cescribe the ,.evi- determined is not large can ZXMWD reach the global
ation of the invariance of .A to Jr(y). The exact minimum sol,,:*mn. Otherwise the solution may
determination of the deviation requires the concept of possess local minima even if the range jPjj < I ap-
the degree of coincidence of two subspaces defined in pears small. In Section 3B we will present a direct
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approach to circumvent this problem. The solutions space .A' over the subspace Im B. We only need to
of the direct approach are the same or close :o those dete"mine X first by solving the following equation:
given by the above optimization method with the
global minimum error. Therefore, the results obtained BT

by the direct approach can be used to diminish the BrAr
regicn of search for the optimization. This overall
approach combining the metho4d,-ofSections 3A and BT(At -1

3B will be illustrated by the examples used in our X 0 (49)
previous paper. B T

BRAT,
_B. The dirct determination of constrained approx-

imate lumping matrices BT(AT)S.-I
Considering the difficulty reaching the global min- -- ,-

imum solution with the above optimization approach where sk k. = .. m) is greater than or equal to the
and also that some amo.nt of error is acceptable in rank of Ak, and then solving eq. (48) to determine M.
practice. it would be desirable to develop a direct way In the current problem B = MG, -" = Y and the
for determining the ,nstrained approximate lumping resultant M is the exact lumping matrix containing
schemes with satisfactory accuracy. Using the concept 3 f with the smallest row number I.
of the minimal Ak-invariant subspace J over a given When we want to proceed further to find
subspace #ii, we havet built such an approach de- good-quality approximate lumping matrices with

-scribed-below. h less than 1, we need first to determine higher-
It is well krown that the minimal invariant sub- dimensional Im X which are as nearly as possible

space .1( for an (n x n)-matrix A over a given sub- orthogonal to
space Im B coincides with

3-1 MG
MY'= l Im(A.*)= Z Im(A'B) (44) MGAI

j=0 j=Q

for every integer s greater than or equal to the rank or MG(A 1)s,-
the degree of a minimal polynomial for A [in particu- (50)

,- I M

lar, i' = 1 Im(AjB)] (Gohberg et a!.. 1986). We MG
j=0 MGA M

know that

Y Im(AJB)=Im(B A . A'-IB) (45)

jio Then the resultant # will be as nearly all Ak-invariant

and the orthogonal decomposition of the n-dimen- as possible. The corresponding Ms are good ap-
sional real space .4 is proximate lumping matrices containing M G with

BT h less than I. This consideration is equivalent to find-

BAr ing the subspace Im X, which is simultaneously as
4" =Im(B AB ... Aj B)F) Ker nearly orthogonal to ImM r , lrmntA A .)T.J im [M(Ar)5, t I]r mM r . lm(MGAr)r.

- Im [M(Ar - -] as possible. This X can be :eadily
(46) determined by using the concept of the degree of

In order to determine Im (B AB . . . A- B) we can coincidence between two subspaces given in our pre-
vious paper (Li and Rabitz, 1990).

first determine the kernel by solving the following Let Q(G)r1 (k = 1, 2. m; i = 0, 1.s - 1)
equation: be the orthonormal matrix representation of

B r  "]Im (MG(A iii] I Ising the Schmidt orthogonalization

BrAT 1 0 method one can transform [MG(A[V]T to Q(G) i().L BAX~ j 04)First we define a matrix
BriArT), - I -

(2) = Q Q(G),kih (51)
Suppose the dimension of Im X is n - 1. After the k=1 i=o
determination of X then the matrix repre;e.itation If we choose a set of orthonormal basis for Im X, i.e.
Mr' of the smallest A-invariant subspacc .# with
dimension I over Im B can be determine by solving XTX = In (52)
the equation then the problem becomes the determination of X,

XrM 0. ,48) which gives the smallest trace

It is straightforward to determine the mithinal mran tr xr Y(2)X. (53)
simultaneously A, (K = 1. 2 . mI-invariant sub- XIX 1_
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The solution can be readily obtained by determining 4. EXAMPLES
the eigenvalues and eigenvectors of Y(2) (Bellman, The methods proposed in this paper will be illus-
1970). The n - h eigenvectors with the smallest sum of trated by the following reaction scheme, where the C, s
their eigenvalues are X and the rest of the eigenvec- are species and the numbers are unitless rate con-
tors compose MT. When all the eigenvalues are dis- stants:
tinct, the solution for M with a specified h is unique. If
there exist multiple eigenylues,,the sets of eigenvec-
tors with the same sum of eigenvalues are all solu- 2

tions. When the eigenvectors of Y(2) are arranged C' + C2  C3  + C4

according to the nonincreasing order of their eigen- 2 2

values, the last n - A eigenvectors are X and the first k5  2

h eigenvectors are M r . Therefore, the eigenvector C C /
matrix R(2) of Y(2) supplies all lumping matrices with i C/

different h.
There are two further issues we need to consider. C' ; C

First, sometimes MGA, is a null matrix. In this case
the contribution of Ai to the determination of the
lumping matrix can be neglected. In order to avoid
this situation, we can use the resultant M from other When ks5  1, this mechanism admits some exact
Ak with row numer I higher than M, as a new M to lumping solutions. By changing the rate constant
calculate MG A I. If MG A I for the new MG is still a null k5 1 to 0.9 (example I) and 0.1 (example 2) the system
matrix, we can use the resultant M with row number contains some exact and approximate lumping
2 higher than the original MG as a new M, to calculate schemes.
MGA, and so on. Second, as in the discussion in Letting yj represent the concentration of C, it is
Section 3A, in order to satisfactorily assure that the easy to write out the kinetic equations and the trans-
resultant M, is orthogonal to MG, one can multiply pose of the corresponding Jacobian matrix Jr(y):
MG in eq. (50) by a large positive constant c.

Notice that the M, obtained by eq. (53) will not
definitely give the minimum Z. As shown below in the dy 1 /dt = - (1 + ks 1 )y1 - 2 1yY 2 + 4 Y3y4
simple examples, when h is close to the dimension of dy 2 /dt =- - 2y Y2 + 4y3 Y4

the smallest simultaneously Ak-invariant subspace
over M,, the solutions of this direct approach really dy 3/dt = - 2Y3 - 4Y3)' 4 

+ 2y, Y2
have the global minimum Z. In other cases, however, dy 4 /dt = - 2Y4 - 4V3y 4 + 2Y Y2 (54)
the solutions of the direct approach are still close to
the global minimum ones. Therefore, we can readily dy,/dt = - Y5 + k 51y1 + 2Y2 + /2y6
determine the best lumping matrices with large h by
the direct approach. For the lumping matrices with dy 6 idt = - 2Y 6 + 

2)Y3 + Y5

small h, if the errors of the solutions obtained by the dy1 /dr - ,,2y. + y1 + -
direct approach are acceptable. one can directly use
the resultantM. Otherwise, one can use the optim- dv8sdt = - y8 + 2y, + 2Y-

- 2y 2 - I - k, - 2Y2 2t2  2v, k, 0 1 0
2Y -2(1 + Y, 2Y, 2Y, 2 0 0 0

4Y4  41 - 2(1 + 2Y,) - 4Y4  0 2 0 0
JT(y) = 4Y3 43 - 4Y 3  - 2(1 + 2Y3 ) 0 0 0 2

-1 1 0 0-l I 0 0
0 2 -\- 0_

0 0 0 0

0 0 1 - 1

J '(y) can he represented as

ization method given in Section 3A to determine
4

M and the results of the direct approach may be used j 1(y) = .,I, + 5. 1
to diminish the region of the unknown parameters.
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where

- I - ks, 0 0 0 te, 0 1 0

0 -2 0 0 2 0 0 0

0 0 -2 0 0 2 0 0

0 0 .. 0 0 0 2
A°-I 1 0 0

0 .2 / 2  0 0

0 0 1 /-

0 0 0 -2 -2 2 2
-2 -2 22 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 00 0 0 0 0

A1 = A

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 4 4 -4 -4
4 4 -4 -4 0 0 0 0

A3 = A,

0 0 0 0

This information will be used in the examples below.

4A. Example I
We will first enploy the optimization approach employed. The results obtained by these approaches

presented in Section 3A to determine the constrained will be compared with each other.
lumping matrices with the global minimum error. Let k5 l = 0.9 and the given part of the lumping
Then the direct approach given in Section 3B will be matrix is taken as

MG = (0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000).

Utilizing eq. (43) and letting c = 2, we obtain the
symmetric matrix

0.2313 0.2434 0.2434 0.2434 0.0000 0.0000 0,0000 0.0000
0,2434 0.2562 0.2562 0.2562 0.0000 0.0000 0.0000 0.0000
0.2434 0.2562 0.2562 0.2562 0.0000 0.0000 0,0000 0.0000

YM 0.2434 0.2562 0.2562 0.2562 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.0000 0.0000 0.0000 0.0000 0.500 0.5000 0.5000 0.5000
0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
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The eigenvalues and corresponding eigenvectors

are given as follows:

;.= 2 1 0 0 0 0 0 0

0.0000 0.4809 0.8768 0.0000 0.0000 ().0000 0.0000 0.0000
0.0000 0.504..:').-2776 - 0.1538 0.8019 0.0000 0.0000 0.0000
0.0000 0.5062 - 0.2776 0.7713 - 0.2678 0.0000 0.0000 0.0000
0.0000 0.5062 - 0.2776 - 0.6176 - 0.5341 0.0000 0.0000 0.0000

R(1) = 0.5000 0.0000 0.0000 00000 0.0000 - 0.0846 0.7071 - 0.4928
0.5000 0.0000 0.0000 0.0000 0.0000 - 0.0846 - 0.7071 - 0.4928
0.5000 0.0000 0.0000 0.0000 0.0000 0.7815 0.0000 0.3732
0.5000 0.0000 0.0000 0.0000 0.0000 - 0.6124 0.0000 0.6124

This example is very special. No matter what value the second column of R(I) in X has a nonzero eigen-
of c we choose MG is an eigenvector of Y(I). For other value. If we want to determine M, with r 1, this
problems c should be big enough to guarantee that column most probably is the solution owing to its
each column of M r is an eigenvector of YIl). How- giving the largest magnitude I to the last term in
ever, in the presept example c must be larger than 1. eq (35). Indeed, using the IMSL routine ZXMWD we
Otherwise, the eigenvalue of M r for Y(I) is not larger find the global minimum solution of the linear combi-
than I and MG cannot be located in the first column nation coefficient vector
in R(1).

Since the first column of R(I) is MG and other P = (1 0 0 0 0 0 0 )T

columns are orthogonal to it, any row of M, must be and this corresponds to M D being the second column
a certain linear combination of these seven columns, of R(l). Then the resultant best lumping matrix with
which compose the matrix X. One can see that only h = 2 is

M0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000\
M = 0.4809 *0.5062 05062 0.5062 0.0000 0.0000 0.0000 0.0000)

This lumping matrix M may now be used as M, to
construct the first term of eq. (43) again for the deter-
mination of the lumping matrix with h = 3. The re-

__ sultant Y(1) and R(I) are the following:

2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.3333 0.3333 0.3333 0.0000 0.0000 0.0000 0.0000

0.0000 0.3333 1.3333 0.3333 0.0000 0.0000 0.0000 0.0000
Y(l) 0.0000 0.3333 0.3333 1.3333 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.2500 1.2500 1.2500 1.2500
0.0000 0.0000 0.0000 0.0000 1.2500 1.2500 1.2500 1.2500

0.0000 0.0000 0.0000 0.0000 1.2500 1.2500 1.2500 1.2500
0.0000 0.0000 0.0000 0.0000 1.2500 1.2500 1.2500 1.2500

,-.= 5 2 2 1 1 0 0 0

0 0000 100) 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.5774 0.0000 - 0.8165 0.00() 0.(X)O0 0.0000

0.0000 0.0000 0.5774 0.7071 0.4083 0.0000 0,0000 0.0000
R 0.0000 0.0000 0.5774 - 0.7071 0.4083 0.0000 0.0000 0.0000

0,5000 0.0000 0.0000 O.(XX)0 0.0000 - 0.0846 0.7071 - 0.4928
0.5000 0.0000 0.000 0.0000 0.0000 -0.0846 - 0.7071 - 0.4928
0.5000 0.0000 0.0000 0.00() 0.0000 0.7815 00000 0.3732
0.5000 0.O(X)0 0.00(H) 00(8)0 0.0000 - 0.6124 0.0000 0.6124
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In order to locate MG in the first column of the new Following the same procedure we use this M as M.
R(I) we choose c = 5. We find the first and the second to construct a new Y(1) and determine the best lump-
rows of MD simultaneously by the determination of ing matrix with h = 4. The resultant Y(1) and R(l) are

the (7 x 2)-matrix P. The result is the same. In this case we found that the solution is not

/41 0 0 0 0 0 0\ unique. For example, the following two lumping ma-
=0 1 0 0 0 0 ) trices have the same total error:

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

M= 0.0000 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.7071 -0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0.0000

= 0.0000 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 0.0000

0.0000 - 0.8165 0.4083 0.4083 0.0000 0.0000 0.0000 0.0000

The resultant best lumping matrix with h = 3 is

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000

M = 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 0.0000

Any linear combination of the last rows in the two
matrices (provided it is normalized) can be used as the
new last row to give a lumping matrix with the same
accuracy. For example, we have

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 0.0000 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 0.0000

0.0000 0.7071 0.0000 - 0.7071 0.0000 0.0000 0.0000 0.0000

When we use columns 1-5 of R(U) to construct the
lumping matrix with h = 5. it is an exact one. This is
equivalent to the following simple lumping matrix:( 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

These resultant lumping matrices are similar to the

following ones obtained by solving the matrix equa-
tions in our previous paper (Li and Rabitz, 1990),

except for h = 3:

( 0.0000 0.0000 0.0000 0.0000 05000 0.5000 0.5000 0.5000 N

0.4843 0.5101 0.5026 0.5026 - 0.0012 0.0040 - 0.0072 0.00441

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000

M 0.4839 0.5098 0.5029 0.5029 - 0.0013 o.0040 - 0.0073 0.0047
0.0000 0.0000 0.7071 -0.7071 0.0000 M .0(X) O.x)O 000)
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0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.5211 0.4721 0.4913 0.5139 -0.0052 0.0051 -0.0030 00031

M 0.0338 - 0.0186 0.7137 - 0.6994 - 0.0002 0.0002 - 0.0001 0.0001
- 0.6934 0.7188 0.0484 - 0.0033 0.0055 - 0.0076 0.0049 - 0.0028

A lumping matrix M can be considered as the
matrix representation of a subspace. Then the similar- dy 4 idt = - 2.000054

ity of the lumping matrices given by the present ap-
proach and the original one may be determined by the d91 /dt = 0.950052 + 1.7321.5,3
corresponding degree of coincidence between the two d52/dt = - 1.900052 - 1.1547*,. 3 + 1.6330J 3 ,4
subspaces, d. For h = 2, 3 and 4, we have d, = 0.99,
0.67 and 0.92, respectively. They are very close for + 1.8856534 + 1.3333N, + 0.66675 2

h = 2 and 4. In our previous paper, we used eq. (28) to d5 3/dt = - 2.000053 + 0.66675'253 - 0.94285254
describe the deviation of the invariance of M to J T(y).

Hence, the results have a larger error. For h = 3 the - 1.08875354 - 0.7698 ,2 - 0.384952
lumping matrix obtained by our previous paper is (59)
a local minimum solution, which can also be obtained
by the present optimization approach if we constrain dy 4 /dt = - 2.000054 + 1.8856'25 3 - 2.66675254
the unknown parameters in the suitable region. From
our previous paper one can find that the initial values - 3 4

of iteration we chose for the matrix equations did not dy, /dt = 0.950052 + 1.732153
contain one which is near the global minimum solu-
tion and then we failed to find it. d5 2/dt = - 1.900053 - 1.15475,53 - 1.41425254

Utilizing eq. (21) and the present optimization ap- .2
proach, we obtain the lumped kinetic equations for - 1.63305354 + 1.3333 3

the new lumping matrices validated in the whole Y,- dP3 /dt = - 2.000053 + 0.666753J3 + 0.81655J4
space as follows:
Lumped kinetic equations with h = 2: + 0.94305354 - 0.7698,3 (60)

d,/dt = 1.9755, 2  dv 4 /dt = - 2.0000 4 + 1.63305353 - 2.0000.554

(56) - 2.30945354 + 1.8856. 2 .

dv2/dt = - 1.97685 2 - 0.01361 2

Lumped kinetic equations with h -- 3: For comparison the solutions of (other lumped
species .j have the same accuracy as that of ., ) of

d5,/dt = 0.955 2 + 1.732 153 eqs (54) (original model) and (56)-(58) (approximately

d5 2/dt = - 1.90005 2 - 1.154752.3 + 1.3333 2 (57) lumped models) for different initial values are given in
Figs 1-3. Equations (58)-(60) have the same accuracy.

d5:3/dt = - 2.000053 + 0.66675353 - 0.76985 The results are very satisfactory for all chosen initial

conditions, even if h = 2. The differences between the
enlumped kmdeq s) wpresent lumping matrices and those obtained in our
ent lumped models): previous paper are not very large, but the accuracy of

d5,/dt = 0.9500,2 + 1.732153 the new lumping matrices is much higher.
d,/dt = - 1.9000 2 - 1.1547 23 + 1.3333A, Now we apply the second approach in Section 3B

-2 1.000 15 3to determine the approximate lumping matrices dir-

- 2.00004 (58) ectly. Using eqs (50) and (51) one can obtain matrix
Y(2). Since Ao has the highest rank. 6, we simply take

d53/dt = - 2.0000.93 + 0.666752'3 - 0.7698 all s, = 6. The resultant Y(2) and its eigenvalues and

+ 1.1547p2 eigenvector matrix R(2) are given below:

0.9891 1.1469 1.1469 1.1469 0.0000 0.0000 0.0000 0.0000
1.1469 1.3370 1.3370 1.3370 0.0000 0.0000 0.0000 0.0000
1.1469 1.3370 1.3370 1.3370 0.0000 0.0000 0.0000 0.0000
1.1469 1.3370 1.3370 1.3370 0.0000 0.0000 0.0000 0.0000

Y(2)- 0.0000 6.0000 0.0000 0.0000 1.2500 1. 2500 .2500 1.2500
0.0000 0.0000 0.0000 0.0000 1.2500 1. 2500 12500 1 2500
0.0000 00000 00000 0.0000 1.2500 12500 1.2500 12500
0.0000 0.0000 0.0000 0.0000 1.2500 1.250) 1.2500 1.2500
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=5.0000 4.9959 0.0041 0.0000. 0.0000 0.0000 0.0000 0.0000

0.0000 0.4442 0.8959 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.5 173 - 0.2565 0.0000 - 0.8 165 0.0000 0.0000 0.0000
0.0000 0.5 173 - 0.2565 0.7071 0.4082 0.0000 0.0000 0.0000

R() 0.0000 0.5 173 - 0.2565 - 0.707 1 0.4082 0.0000 0.0000 0.0000
0.50 0.000 Oooo 0.0000 0.0000 0.1361 0.70-71 - 0.4811
0.5000 0.0000 0.0000 0.0000 0.0000 0.1361 - 0.7071 - 0.4811
0.5000 0.0000 0.0000. 0.0000 0.0000 0.5443 0.0000 0.6736
0.5000 ooooo0 0.0000 0.0000 0.0000 - 0.8165 0.0000 0.2887

05

0 0

*0

o03 solid line, exact solution(Eqn 54)
.solution of 2-dimensional lumped model(Eqn. 56)1

02[ L solution of 3-dimensional lumped model(Eqn 57)

I0 solution of 4-dimiensional lumped model(Eqn. 58)

0 10 solution of 2-dimensional lumped model(Eqn. 61)-

initial condition y1(0)=y,(0)=O 5

00

-0 1 I

00 05 10 1.5 20 25 30 35 4.0 45 50

Fig. 1. Comparison between the solutions of 5, for eqs (54), (56)-158) and (61) [initial condition:

YI Y2(O) =0.5, others are zero].

0I 5

04 g 111 1
0 3 solid line exact solution(Eqn 54)

souto ofV .mnioa updmoe( 6
02 ~ solution of 2-dIimensional lumped model(Eqn 56)

02 -a solution of .3-dimensional lumped model(Eqn 57)

o I solution of 4-dimnensional lumped model(Eqn 58)

initial condition v1 0)=-v4 (0)CO 0-

00 1

-0 1
0 0 05 1 0 1 5 0 5 30 .3 4 0 45 5 0

Fig. I Comparison between the solutions of -j~ for eqs (54), (56) -(58) and (61) [initial condition:
00 4(0 = 0.5. others are zero].
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05m-a-:m==- a:- am- a- = : a -_

04

0.3 solid line exact solution(Eqn 54)

<solution of 2-dimensional lumped model(Eqn 56)

02 A solutto,, of 3-dimensional lumped model(Eqn 57)

solution of 4-dimensiondl lumped model(Eqn 58)

0 1 S solution of 2-dimensional lumped model(Eqn 61)

initial condition y5 (O)=y 7 (O)=O 5

00

-01 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ _

00 05 10 15 20 25 30 35 40 45 50

Fig. 3. Comparison between the solutions of -v for eqs(54), (56)-(58) and (61) [initial condition:
ys(O) = y7(0) = 0.5, others are zero].

In this example, MG AT = 0 (i = 1-4). Therefore, However, the fourth and fifth eigenvalues are equal,
we use the first two columns of R(2) to calculate and the best lumping matrix with h = 4 is not unique.
MGAT (i = 1-4) again. In order to force the MG to be The first three columns of R(2) with either one of the
the first column of R(2) we multiply M, by 2. The columns 4 and 5 or any linear combination of these
resultant new Y(2) and R(2) with the corresponding two columns (provided the resultant vector is nor-

eigenvalues are the following:

5.9891 1.1469 1.1469 1.1469 0.0000 0.0000 0.0000 0.0000
1.1469 6.3370 1.3370 1.3370 0.0000 0.0000 0.0000 0.0000

1.1469 1.3370 6.3370 1.3370 0.0000 0.0000 0.0000 0.0000

Y(2) 1.1469 1.3370 1.3370 6.3370 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000

0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000

= 10.0000 9.9959 5.0042 5.0000 5.0000 0.0000 0.0000 0.0000

0.0000 0.4442 0.8959 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.5173 - 0.2565 0.0000 -0.8165 0.0000 0.0000 0.0000
0.0000 0.5173 - 0.2565 0.7071 0.4082 0.0000 0.0000 0.0000

R(2) 0.0000 0.5173 - 0.2565 - 0.7071 0.4082 0.0000 0.0000 0.0000
0.5000 0.0000 0.0000 0.0000 0.0000 0.1361 0.7071 - 0.4811
0.5000 0.0000 0.0000 0.0000 0.0000 0.1361 - 0.7071 -0.4811

0.5000 0.0000 0.0000 0.0000 0.0000 0.5443 0.0000 0.6736

0.5000 0.0000 0.0000 0.0000 0.0000 - 0.8165 0.0000 0.2887

The resultant R(2) is the same, but the eigenvalues
are different. According to the second approach the malized) will give lumping matrices having the same
first two columns of R(2) form the best lumping accuracy. The first five columns of R(2) form an exact
matrix with h = 2, the first three columns of R(2) form lumping matrix because the rest of eigenvalues are all
the best lumping matrix with h = 3. Since the eigen- zero.
values of the first three eigenvectors are distinct, the Since M is only a matrix representation of a sub-
best lumping matrices with h = 2 and 3 are unique. space, row elementary operations (multiply one row
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by a constant, interchange the positions of two rows, small h instead of Pij by the first optimization ap-
subtract one row multiplied by a constant from an- proach and constrain the region of Mi1 around the
other row) will give another matrix representation of solution given by the second direct approach. From
the same subspace (Lang, 1986). These two Ms are the above example, one can see that the global min-
equivalent. Using the row elementary operations on imum solutions of M with small h are easy to reach in
columns 2 and 3 of R(2) the best lumping matrix with this way.
h = 3 can be represented as -- -

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
M = 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 0.0000

Comparing the results of the two approaches, one 4B. Example 2
can see that the resultant best lumping matrices are The second example is the same system except that
the same except for h = 2. The best lumping matrix k,1 = 0.1. For the same MG as that of example 1 the
with h = 2 given by the second direct approach is the first approach gives the same best lumping matrices
following: for different h as those of example 1, except that h = 2

(O.000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000).(0.4442 0.5173 0.5173 0.5173 0.0000 0.0000 0.0000 0.0000)"

(0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000)
M = '0.3027 0.5503 0.5503 0.5503 0.0000 0.0000 0.0000 0.0000)

The corresponding lumped kinetic equations are as
follows: These resultant lumping matrices are similar to

dll/dt = 1.973952 those lumping matrices obtained by solving the
matrix equations in our previous paper (Li and

d 2 /dt = - 1.980512 - 0.0447p'. (61) Rabitz, 1990). For comparison those lumping ma-

For comparison the solutions of iv of eq. (61) for trices are listed below:

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000( 0.2945 0.6025 0.5220 0.5222 - 0.0017 0.0271 - 0.0577 0.0324)

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
M = 0.3196 0.5953 0.5205 0.5199 - 0.0297 0.0259 -0.0163 0.0201

0.8486 - 0.5237 0.0427 0.0304 - 0.0315 0.0301 - 0.0224 0.0238

0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.5389 0.4324 0.5427 0.4750 - 0.0334 0.0275 - 0.0130 0.0189

M = 0.5304 - 0.4455 0.3710 - 0.6182 0.0080 - 0.0149 0.0101 - 0.0031

0.5537 - 0.4135 - 0.5877 0.4207 0.0029 - 0.0091 0.0069 - 0.0007

different initial values are also given in Figs 1-3. The
results are quite satisfactory for all chosen initial con- The degree of coincidence between the subspaces cor-
ditions, but of somewhat lesser quality than in eq. (56) responding to the present and the original solutions of
with the first optimization method. M, d, = 0.98, 0.93 and 0.96 for h = 2, 3 and 4, respect-

From the comparison of the results for these two ively.
approaches one finds that the global minimum solu- Utilizing eq. (21), the resultant lumped kinetic
tions of the constrained lumping matrices can be equations for the new lumping matrices given by the
readily obtained by the second direct approach if h is optimization approach validated in the whole Y,-
close to the dimension of the smallest simultaneously space are as follows:
A,-invariant subspace over -#,. In other cases the
resultant lumping matrix given by the second direct Lumped kinetic equations with h = 2:

approach is still very close to the global minimum dldt = 1.8173 ,
solution. Therefore, taking advantage of this situation
one can directly determine the elements of M with d. 2 /dt = - 1.175JI2 - 0.2174 ., (62)
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Lumped kinetic equations with hi = 3: d5y4idt = - 2.0000i4 + 1.88562.y3 - 2.6667j,5)4

d91 /dt = 0.550092 + 1.732193 - 3.07923,, - 1.1773 , - 1.0887./2

d5) 2/dt = - 1.10 0 0 2 - 1.1547PJ2 ,3 + 1.3333i,3 (63) d. I/dt = 0.5500i2 + 1.73215,3

d5 3 /dt -_ 2.00005,3 + 0.6667 v25 3 - 0.7698,3 dv 2/dt = - 1.10002 - 1.1547,253 - 1.4142,2 ,

Lumped kinetic equation.m-th k i 4 (three equival- - l.6330 35'4 + 1.33335
ent lumped models):

d5 1/dt = 0.550052 + 1.7321 )3 d5 3 /dt = - 2.00003 + 0.666723 + 0.8165 2i4
+ 0.94303., - 0.7698 j,2 (66)

dv2 /dt = - 1.1000 2 - 1.1547 2J 3  + 1.3333i j, 6

- 2 .0Wq(64) d5 4/dt = - 2.00004 + 1.6330)253 - 2.00002j,
- 2.3094'

35), + 1.8856, .
d5 3/dt = - 2.0000,3 + 0.6667)a53 - 0.7698 '2

.72 For comparison the solutions of ,1 of eqs (54) (orig-
+1.15 47  inal model) and (62)-(64) (approximately lumped

d ,/dt - 2.0000 , models) for different initial values are given in
Figs 4-6. Equations (64)-(66) have the same accuracy.

d ,/dt  0.5500 2 + 1.7321)3 The results are very satisfactory for all chosen initial
% conditions when ii > 3. In contrast, the lumping

d,)/dt - 1.10002 - 1.1547zJ3 + 1.6330254 matrix obtained in our previous paper still has a rela-

+ 1.8856)354 + 1.3333 )2 + 0.6667 )2 tively large error when h = 4 [see Figs 4 and 6 in Li
and Rabitz (1990)1.

Similarly, utilizing the second direct approach the
matrix Y(2) and its corresponding eigenvalues and
eigenvector matrix R(2) are the following:

5.340 0.3665 0.3665 0.3665 0.0000 0.0000 0.0000 0.0000

0.3665 6.6220 1.6220 1.6220 0.0000 0.0000 0.0000 0.0000
0.3665 1.6220 6.6220 1.6220 0.0000 0.0000 0.0000 0.0000
0.3665 1.6220 1.6220 6.6220 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000
0.0000 0.0000 0.0000 0.0000 2.5000 2.5000 2.5000 2.5000

;.= 10.0000 9.9497 5.0503 5.0000 5.0000 0.0000 0.0000 0.0000

0.0000 0.1307 0.9914 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.5724 - 0.0755 0.0000 - 0.8165 0.0000 0.0000 0.0000
0.0000 0.5724 - 0.0755 0.7071 0.4082 0.0o00 0.0000 0.0000
0.0000 0.5724 - 0.0755 - 0.7071 0.4082 0.0000 0.0000 0.0000
0.5000 0.0000 0.0000 0.0000 0.0000 0.1361 0.7071 - 0.4811
0.5000 0.0000 0.0000 0.0000 0.0000 0.1361 -0.7071 -0.4811
0.5000 0.0000 0.0000 0.0000 0.0000 0.5443 0.0000 0.6736
).5000 0.0000 0.0000 0.0000 0.0000 - 0.8165 0.0000 0.2887

As in example I the best lumping matrices with

d, 3idt = - 2.0000)3 + 0.6667)25j,3 - 0.9428.2 4'  h > 3 obtained by the second direct approach are the
same as those given by the first optimization one. The

1.08875)35,4 -0.7698 - 0.38495) (65) best lumping matrix with h = 2 given by the second

approach is the following:

= 0.0000 0.0000 0.0000 0.0000 05000 0.5000 0.5000 0.5000)
0.1307 0.5724 0.5724 0.5724 0.0000 0.00W 0.0000 0.0000/
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This lumping matrix is still close to the one given by ous paper when applied to determining the lumping
the first approach. The corresponding lumped kinetic schemes validated in the whole composition Y-space.
equations are given below:

ditdt = 1.7891i., s. CONCLUSION AND DISCUSSION

d/dt = - 1.9846'2 - 0.5129j'2. (67) In the present paper, we have proved that the
. .- necessary and sufficient conditions for the existence of

For comparison the solutions of ' of eq. (67) for exact lumping in the whole composition space be-
different initial values are also given in Figs 4-6. The come simpler. The invariance of the subspace
results are not satisfactory for all chosen initial condi- .W spanned by the row vectors of the lumping matrix
tions. However, for i = 2 the lumping matrix with the M to the transpose of the Jacobian matrix JT(y) for
global minimum error given by the first optimization all values of y in the Y.-space is sufficient for exact
approach also has a quite large error. lumping.

From these examples one can see that these two A new optimization approach to determine the
approaches are simpler than that given in our previ- constrained approximate lumping schemes with the

05

04

030

~0: 0 0 0 0 0 0 0 0 0 0 0

0 2 0 solid line exact solution(Eqn. 54) 6

solution of 2-dimensional lumped model(Eqn. 62)
0 1 solution of 3-dmensonal lumped model(Eqn. 63)

a solution of 4-dimensional lumped model(Eqn. 64)

0,0 0 solution of 2-dimensional lumped model(Eqn. 67)

initial condition: Yl(O)=Y2 (0)=05

-0 1 I 1 I I 1 11
0.0 05 1.0 1.5 2.0 2.5 30 35 40 4 5 50 I0

Fig. 4. Comparison between the solutions of Y, for eqs(54), (62)-(64) and (67) [initial condition':
y, (0) = y2(0) = 0.5, others are zero].

I I I

05

04
03W

- o oC

02 o solid line exact solution(Eqn 54)

solution or 2-dimensiunal lumped model(Eqn. 62)

0 1 solution of 3-dimensional lumped model(Eqn 63)

solution of 4-dimensional lumped model(Eqn 64)
0 0 0 solution of 2-dimensional lumped model(Eqn. 67)

initial condition Yl(0)=Y4 (0)=0 5
-0 1

00 05 10 15 20 25 30 35 40 45 50

Fig. 5. Comparison between the solutions of i, for eqs 54). (62)-64) and (67) [initial condition:
y, (0) = y,(0) = 0.5. others are zero].
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::::::: ma a z : ma: : = a '

04

03 solid line exact solution(Eqn 54)

- solution of 2-dimensional lumped model(Eqn 62)

o2 - solution of 3-dimensional lumped model(Eqn 63)

0 solution of 4-dimensiondl lumped model(Eqn 64)

0 1 o solution of 2-dimensional lumped model(Eqn 67)

initial condition Ys(O)=y 7 (O)=O 5

00F
-0t I I I I

00 05 10 15 20 25 30 35 40 45 50

L

Fig. 6. Comparison between the solutions of j, for eqs(54), (62)-(64) and (67) [initial condition:
y5(O) = y7(0) 0.5, others are zero).

global minimum error is presented. This approach is in our previous paper is general and can be applied in
based on the decomposition of the total error. When other cases, not only for the lumping schemes
the approximate lumping schemes are validated in the validated in the whole composition )',-space. The re-
whole Y,-space, we can effectively treat all Ak equally. sultant M, by the present paper might be used as an
This simplifies the determination of the constrained initial value for the matrix equations to determine the
lumping schemes. Using MG and all orthonormalized lumping schemes validated in any given region.
A M r one can construct a special symmetric matrix
Y( ). The rows of the part to be determined MD Of Acknowledgements-The authors acknowledge support from

M are linear combinations of those eigenvectors of the Office of Naval Research and the Air Force Office of
Y(I) with the largest eigenvalues and orthogonal to Scientific Research.
the row vectors of M0 . In order to determine MD with
higher row number r, the resultant MD with lower r is
used with MG, to construct Y(l). Using the IMSL
routine ZXMWD for the global minimum with con- NOTATION
straints one can determine these linear combination Scalars
coefficients and consequently MD. a,(y) kth coefficient of the decomposition of

Utilizing the concept of the minimal A-invariant jT(y)
subspace over a given subspace we developed a direct Ci ith species of a reaction system
approach to determine the approximate lumping ma- k integer

trices. In the examples of the pre-ent paper, when h is I integer
close to the dimension of the smallest simultaneously m integer
Ak-invariant subspace over .&,, the resultant lumping M, (i,j)-entry of matrix M
matrices are the same as those with the global min- . corresponding subspace of M
imum error given by the first optimization approach. , corresponding subspace of M,
When the h is low, the resultant lumping matrices are J ' orthogonal direct complement of .# in
still close to the global minimum solutions given by n-dimensional space
the first approach. Therefore, one can employ the first n dimension of vector y
optimization method to directly determine the el- h dimension of vector y
ements of M instead of those of P and constrain the Pj (i. j)-entry of matrix P
region of the unknown parameters around the solu- r row number of MD
tion given by the second direct approach. ." n-dimensional real space

Two examples used in our previous paper were s integer

employed to illustrate these new approaches. The s, rank of Ak
results show that these new approaches are simpler t time
and have higher accuracy than the method given in ) n-dimensional composition space
our previous paper. However, the approach pres.nted Yk kth element of vector y
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Z total error defined as tr MAt!(I. z defined as

- MrM)AkMT

Z(y) defined as tr [E (y)E(y)] Greek letters
Z. n-dimensional lumped species composi- ., ith eigenvalue of matrix Y(l) or Y(2)

tion space Q desired region of the composition space

Vectors and matrices Symbols

Capital letters represent matrices: bold-face lower any property related to the lumped

case letters represent vectors, system

A constant matrix 0 null matrix

Ak basis matrix of J r(y)

B constant matrix REFERENCES
E(y) error matrix defined as (l, - Aris. R.. 1989. Reaction. in continuous mixtures. A.I.Ch.E. 1.

M , T)j r(y)M T 35. 539-548.
f(y) n-dimensional function vector Astarita. G.. 1989, Lumping nonlinear kinetics: apparent
f) h-dimensional function vector overall order of reaction. A.I.Ch.E. J. 35, 529-532.

Astarita, G. and Ocone. R., 1988, Lumping nonlinear kin-
I identity matrix etics. A.I.Ch.E. J. 34, 1299-1309.
J(y) Jacobian matrix of f(y) Bellman, R., 1970, Introduction to Matrix Analysis.

lumping matrix McGraw-Hill, New York.

M, determined submatrix of M Ben-Israel. A. and Greville, T. N. E., 1974, Generalized In-
verse: Theory and Applications. John Wiley, New York.

MG given submatrix of M Chou, M. Y. and Ho. T. C.. 1988, Continuum theory for
M generalized inverse of M satisfying lumping nonlinear reaction mixtures. A.I.Ch.E. J. 34,

MM = 1h  1519-1527.
P coefficient matrix Chou, M. Y. and Ho, T. C., 1989, Lumping coupled non-
Qr MT) linear reactions in continuous mixtures. A.I.Ch.E. J. 35,

matrix representation of Im.(AkM with 533-538.
orthonormal columns Coxson, P. G. and Bischoff, K. B., 1987a, Lumping strategy

Q(G) matrix representation of Tm(AGM ) with I. Introduction techniques and applications of cluster
orthonormal columns analysis. Ind. Engng Chem. Res. 26, 1239-1248.

T, m x r s) w Coxsony P. G. and Bischof, K. B.. 1987b. Lumping strategy
o( rixonrerentaiolnso m(,Dwt 2. A system theoretic approach. Ind. Engng Chem. Res. 26.orthonormal, columns T 2'151-2157.

Q(G (kl matrix representation of lm [Mf(Ar)] Gohberg, ., Lancaster, P. and Rodman, L., 1986, Invariant

with orthonormal columns Subspaces of Matrices with Applications. John Wiley,

Q(y) h x h function matrix New York.

R(I) eigenvector matrix of Y(l) Ho, T. C. and Aris, R.. 1987, On apparent second-order
kinetics. A.I.Ch.E. J. 33. 1050-1051.

R(2) eigenvector matrix of Y(2) Lang, S., 1986, Introduction to Linear Alqebra, 2nd Edition.
X matrix representation of _Vr or submatrix Springer. New York.

of R(I) and R(2) Li. G. and Rabitz. H.. 1989, A general analysis of exact
y n-dimensional variable vector lumping in chemical kinetics. Chem. Enqnq Sci. 44.

1413-1430.
hi-dimensional variable vector Li. G. and Rabitz. H.. 1990, A general analysis of approx-

Y(1) symmetric matrix imate lumping in chemical kinetics. Chem. Enqnq Sci. 45,
Y(21 symmetric matrix 977- 1002.
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Abstract-A general analysis of exact lumping is presented. This analysis can be applied to any reaction
system with n species described by a set of first ordcr ordinary differential equations dy/,dt = f(y), where y is
an n-dimensional vector; f(y) is an arbitrary n-dimensional function vector. Here we consider lumping by
means of an i x n re , ,., *ant matrix M with rank i (A < n. It is found that a reaction system is exactly
lumpable if and only 1i ,nere exist nontrivial fixe I invariant subspaces .0 of the transpose of the Jacobian
matrix J r y) of f(y), no matter what valce., takes, and the corresponding eigenvalues are the same for J r(y)
and JT(6Mfy). Here the rows of M are the basis vectors of .W and M is any generalized 'averse of M
satisfying MM =I, with I, being the i-identity matrix. The fixed invariant subspaces of jT(y) can be
obtained eitfher from the simultaneously invariant subspaces of all A,, where the Ak's form the basis of the
decomposition of Jly). or by determining the fixed Ker F,(J'(y,-)fl" [(aG+r2), -2a JTy)

-- ) rl .vthere, a _i, are the real and nonreal eigenvalues of Jr (y) and;_ a, and r are usually
functions of y:, ,. r Lire nonnegative integers. The kinetic equations of the lumped system can be described as
dP/dt =,If MM). This method is illustrated by some simple examples.

1. INTRODUCTION 1984) presented a lumping analysis for uni- and/or

A prof em which frequently arises in the study of bimolecular reaction systems. Such research has been
chemical kinetics is the high dimensionality and, high .argely confined to uni- and/cr bimolecular reaction
degree of coupling of the reaction system. For systems with the focus on establishing the necessary
example, in many realistic chemical processes, particu- and sufficient conditions for "exact lumping". These
larly those related to petrochemistry, industrial pro- analyses have shown that exact lumping by a network
cesses, combustion phenomena and atmospheric of uni- and/or bimolecular reactions is feasible only
chemistry, the number of reacting species can often under a very restrictive set of conditions. Studies of the
exceed 10-103. It is impractical to incorporate the pitfalls and magnitude of errors in the use of empirical
kinetic equations for each species Consequently, rate expressions for lumping many independent single
lumping, by which several species are treated as a or consecutive reactions were presented by Luss and
single component, is a necessity. Thus one desires :0 Hutchinson (1971), Luss (1975), Golikeri and Luss
reduce the reaction n-ixtui to a small number of (1972, 1974) and Hutchinson and Luss (1970). Un-
lumps in the kinetiz study for practical purposes. It is fortunately until now lumping theory was not suf-
just as important to know hc,' vtematically break ficiently developed to give seful guidelines as to
down a model as it is to have the ability t. build it up. which lurr s to choose for man problems. There are

For different reaction systems the suitab',c ways of still at least two important proolems within exact
lumping will likely be different Evca for a given lumping, which have not been solved yet.
system, the~e could be many lumped models, depc.i-
ding on the objectives. However, one is not able to' (I) There is no known a priori way to determine the
lump a syst.-n arbitrarily, btcause it is not always lumping scheme.
gossible :o ind a model or a set of differential (2) The kinetic equations can have higher order
equations describing the behavior of the lumped nonlinearities than quadratic.
species. For lack of the retical guidance, rest-archers
have often -rient ;iian, \ears trying to find adequate For instance, the second situation :an arise in the
lum.ing schemes by r:.l and erro- The modelling of presence of termolecular reaction,. In addition, non-
catalytic cracking 1or petroleum (Jacob et al., 1976) is a :sothermal proces.-s or the use of empirical rate laws
typical example. C onfounding thic approach is the fact can lead to highly nonlinear kinetic equations. There-
that the true lumped "speci ' may vctually '.e a foic a general lumping analysis capable of treating
combination or function ot the original physical arhitrary nhysical noniinearities is necessary.
.pe'ics. Considering tt-is situztion, a general analysis of

Prir research clearly suggests the 1r:ed for a rig- L (act lumping is p. esented in ,i, prn,'-:. It can be used
oros study of lumr ng which can give u.sefil guide- for any reaction system and :1, nr,'%iou v studied
lines forchoosing lumps. Wei and Kt (1196,; were it,- lumping analyses of uni- and o bm,,ular reaction
first to give a lumping , alysis of uninol-cvksr re :- systems arc specia: cases of this anal',si". In addition.
tion systems and their %k )rk wa- e.,tenc J by O7awa this analysis can also be applieo M , 'r problems
(1973) and Bailey (1972. 19751. One of the authors (Li. described by a set of first order .)rdinary ifferential

1413
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equations. such as problems arising in classical mol- Comparing eqs (5) and (9), we obtain the necessary
ecular dynamics, chemical engineering and control condition for the existence of exact lumping
theory. Mf(y) =./f(A4

Section 2 of this paper presents the conditions under
which a reaction system is exactly lumpable and the Mff(y) .AIf(AIM. ((0)
corresponding kinetic equations of the lumped system. Equation (10) is also sufficient for the existence of
In Section 3, the method& t determine the fixed eatin (10) is as ctore
invariant subspaces of the transpose of the Jacobian
matrix of the kinetic equations are derived. Section 4 f() =mf(mql,
provides some simple examples to which the general then the behavior of the lumped species can be de-
lumping method is applied. Section 5 presents a scribed bv
discussion of the results.

dl/dt = Mrf(M), I

2. CONDITIONS UNDER WHICH A REACTION SYSTEM IS and according to eq. (10) the lumped system satisfies

EXACTLY .LUMPABLE eq. (4). Then we have

Suppose the kinetics of an n-component reaction d /dt - : Mdy,dt
system can be described by d(9-My)!dt=O.

dy/dt=f(y), (1) =C,

where y is an n-composition vector; f(y) is an arbitrary where c is an arbitrary constant vector. Choosing c = 0
n-function vector, which does not contain t explicitly, gives

For practical purposes. here we only consider a
special class of lumping by means of an i x n real =My.
constant matrix M with rank A (A <n). If a system can
be exactly lumped by the matrix M, it means that for Equation (10) does not place any restriction on MI

except that M M = I. This latter point is important
= My (2) in that the nonunique nature of ,M does not effect

we can find an ti-function vector f(q) such that the form of the lumped equations (physical model) in
the exact case. It means that MI in eq. (11) is any one of

dl /dlt = f(g). (3) the generalized inverses s.'isfying MR = 1p. This can
If V, is not lumped, row i of M is the unit vector e[r be easily demonstrated as follows.
=00 ... 010 ... 0), and ?, = v. In this case, since the Consideriag once again that eq. (10) is an identity

lumping is exact, the solutions for y, ana ., by eqs (1) for all y, let y take the following value
and 3) are the same. However. eq. (3) is simpler. M'My,

Not every system is exactiy lumpable. Therefore, we

need to determine the necessary and sufficient con- where .0' is another generalized inverse of M. We get
ditions for the existence of exact lumping. We also
desire that these conditions be constructive in order to Mf(MXy= Mf(MM-'My),
determine the lumping matrices. From eqs (1) and (2) = MAf(MV)
we have

or

d dt =.fdy dt = M fly), (4) .\ffQ ' ! .dl.Qf !. 12)

and upon comparing eqs 13) and (4) we have
=f( If A~y). (5) This shows that different generalized inverses of Al

give the same lumped model.

As the rank of.%l is h. there must exist generalized We cannot directly apply eq. (10) to txamine
merses I hral. 19741 At of matrix AI satisfying whether a system is exactly lumpable or not, because

we do not know %I in advance. In order to obtain
further insight into exact lImping. we differentiate

" here 14 is the hi-identit, matrix Substitutiag eq. (2) both sides of eq. 110) with respect to y to produce
into eq i5 %elds , lJ .w . ,I\Afylr \I \! (13)

fi.t Mv A .f1: y . 1 7)
,Since the rank of .l is ii. it has a nontris rit. null space

ind this i in idcntits fo, any y Therefore, letting t i ith dimension it -Pi. We can crifv triat I Is
nariant inder 1 vl, no matter skhat %alue N takes

Indeed. for ccrs x, i sc h;isc
'.e husc \Il tx: \l,!Jx-'.l'y\Ilx -1 II141

0 *fl tThis implies that Jivx I foran% aloc ot V, i -T

I ?fm 19?tv-m raj
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Suppose. is represented as Substituting eq. (23) into eq. (13) and rearranging it, we
obtain another necessary condition for the existence of

Span 1 ..... , S) exact lumping:

where x's are the basis of. . Let vectors x compose M [J(v)-JRiMy)] =0. (24)
th,, columns of matrix X. then

(16) It is easy to prove that eq. (24) is also sufficient for
exact lumping, if. in addition,. is J ry)-invanant for

and any y. Indeed, when If is J "(y)-invariant for any y, eq.

MJ(y)X = 0. (17) (23) holds. Consequently, eq. (23) and 124) give eq. (13).
We now write eq. (13) in the explicit form

Note that if . i is J(y)-invariant, then . i is J T(y)_

invariant (Gohberg et al., 1986). Let ./=. = "-. Con- / (f(y) ( i(y) if1 (y\
sidering eq. (16). it is obvious that ./t is spanned by the- -

row vectors of Af. " ' 1  F'Y2

.It=Span :mm,, m 1 ,.  m;,;, (18) )
where i, is the transpose of row i of At. f.(y) f. (y) f y)

In conclusion, a system described as eq. (1) can be 4, Y2 VY,
exactly lumped by an h x n real constant matrix M.
only if the nullspace , \ of At is Jf y)-invariant or the / (z) if (z) (f1 z)

subspace. ./spanned by the row vectors of M is J [y) _invariant, no matter what value v takes. We call It' cz, Cz, ?z
and. I the fixed (i.e. y independent) invariant sub- tM QM, (25)
spaces of variable matrices. Since ./ c and .A' are
orthogonal complements. each one can be obtained ('f(z) Jf.(z) :f.z

when the other has been determined. In order to Z, iz, (z.

determine M directly we mainly consider ./I in the
following analysis. However, the existence of the J(y)- where z = ,4VVy, ,s the ith element of z. Multiplying
or jriyg-fixed invariant subspaces is only a necessary both sides of eq. (25) from the right by dy and
condition, i.e. not every M corresponding to. // can be integrating give
used as a lumping matrix. We need to find the
condition under which ff can supply a lumping f~cftY) \ /
matrix, and this result is established below. d v' dz,

It is well known that a subspace .#=Span{m,, tj JziL
M m2.... Im, is JT(y)-invariant if and only if M = / ' .

jT y)m' . #f. i.e. the image of mk upon mapping by d! , ___

matrix J rl y) is a certain linear combination of all nt,: VId dz,

d rlyjm tkl= Y q, (y)m ,,, 119)

, I (26)

where q,,(y's are the linear combination coefficients.
which are usually functions of y. Considering all m, Since the total differential of ,(y) is

gives " Ob

J '(y) A M = AlQ ' Iyl. d il, y)= V d v, (27)

Transposing it yields eq. (26) implies that

%iJ(vu= Q(y).%. (20)d/d

,A here Q(y)Iis an i x matrix with qi,( v as its it. I- J
entry. Since .I/ is invariant under J OIi for any value .( .
of y. therefore we also have

.,JI.IV I=Qf X, ,, X1 211 V %d fl ,) d I'(11

1'sing this relation. ve can dcduce the ',ulicicnt
-ondition for exact lumping. Noic that Ilf Vf- \Iflii c.

Q(% V I %1 1221 "herc c N ,i-dicnsional ,rhitrars constant vector If

,,mparing eqs 1211 and 122) yields vke chooe c: I. sc ohlain eq i , sv hich is the
ncccsary ind ,ulicient condition tor exact lumping

V .11 ' %1 ,1 .11 V %1\ V V 1 231 In addition. i, can also he ,hotn that eq 1131 is a



1416 GENYUAN Li and HERSCHEL RABITZ

necessary and sufficient condition for the existence of Multiplying both sides of this equation from the right
exact lumping. by S - '(y) yields eq. 124), which has been proved to be

This necessary and sufficient condition can be de- a necessary and sufficient condition for exact lumping.
scribed in an alternative way. Substituting eqs (20) and Therefore, the alternative description of the necessary
(21) into eq. (24) yields and sufficient condition for exact lumping obtained by

eq. (241 is the following: a system is exactly lumpable if
[Q(y)-Q(kfAMj]=O. (29) and only if its Jr(y) has nontrivial fixed invariant

Since M is a row-full rank matrix, we can always find A subspaces and the corresponding eigenvalues for
columns from it to construct a nonsingular uix A jT(y) and JT(MMy) are the same.
matrix Mq such that When the corresponding eigenvalues of a fixed

invariant subspace _& for J '(y) are not functions of y,
[Q(y)-Q(MMY)]Mq=0. (30) i.e. they are constants, then it always holds that jT(y)

Transposing this equation gives and J r1 ,qMy) have the same eigenvalues correspond-
ing to .i. However, the presence of constant eigen-

Mr[Qr(y)-Qr(MMy)]=. (31) values cannot guarantee the existence of exact

Considering that M,, is nonsingular, its null space is lumping, because sometimes one cannot find a fixed
only {O}. Therefore, we have invariant subspace of Jr(y) related ti- these constant

QT(y)-QT(MMy)=0, (32) eigenvalues. It is easy to give an example of this.

or Consider the matrix

c QT(y)=Q(MMV). (33) A(y)= y, +2 .Y2

If we consider y symbolically, QT(y) can be treated in

the same way as that of a constant matrix. It is well The eigenvalues of A(y) are 2 and Y, +Y, + 2. The
known that there is a Jordan canonical form related to corresponding eigenvectors are

Q(y) (Appendix A):
Qr(y) =S(y)jo,[;.(y)]S -I(y), (34) -,')( '

where S(y) is an invertible matrix, i.e. the determinant respectively. One can see that the constant eigenvalue
of S(y) is not identically equal to zero for all y and 2 does not have a fixed eigenvector. In contrast, y + Y 2
Jo,[.(y)] is the Jordan matrix (Gohberg et al., 1986). +2 does have a constant one.

After transposing and considering eq. (34), eq. (20) As a special case, when a system is linear, J r(y) is a
becomes constant matrix. In this situation, the fixed invariant

JT(y)MT=MTS(y)j[{(y)]S i(y). (35) subspaces exist and they correspond to constant
eigenvalues. Therefore, a linear system is always ex-

Multiplying both sides of the above equat ,)n from the actly lumpable and any Jr(y)-invariant subspace will
right by S(y) yields give a lumping matrix.

jT(y)MTS(y)=MTS(y)J,[;(y)], (36) When Q(y) is a constant matrix Q, it is interesting
that the lumped system is linear, no matter if the

jr(y)MVfr.M',J 0 ,[;j.(y)], (37) original system is linear or not. In this case. eq. (34)

where becomes
MI = V r(y). (38) Q r = SJ,(A)S- ( 141)

M' has rank A, because S(y) is nonsingular. Since the and all eigenvalues are constants. i.e. 'he fixed in-
rows of AI'are linear combinations of those ofkM, then variant subspace .ft" of jT(y) is related to constant
the row vectors of M' are just another bas's of. ff. The eigenvalues. Equation (20) then becomes
elements of /(y) are the subset of the eigenvalues of
j r(y) corresponding to. #. MJ(y) = QA. (42)

A companion formula to eq. (37) can be obtained by Multiplying both sides of eq. (421 by dy and inte-
considering grating under an appropriate integration condition

Qr(y)=Q1 (M.My), give

in eq. (21) to give MfIy)=QM,1y. t43)

.1r 'im y)'r ,, . ] (39) i.e.

Equations (37) and 139) imply that wiuwn a system is d4 dt = Q ' 1441
exactly lumpable, the eigenvalues of JU MMy) corre- which are linear differential equatons.
sponding to the fixed invariant subspace. #f will be the n summar forena lupin.

same as those of J (y). This is also sufficient for exact In whether t led tb

lumping, becat se eqs (37) and (39) will give spaces, ti of w(1 exist or not:ii( fthev do eina t then

,Ir ()M't J (MMyI'k. (40) we need to examine whether they satisfy either eq. i l0.
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(13), (24) or the corresponding eigenvalues for Jr(y) except ai(yi), i.e.
and J r(,4 My) are the same. When these two con- JT(y=a(yjA (i =
ditions are _atisfied. the system described as eq. (1) is = . .. mJ (50)
exactly lumpable by matrix Al, whose rows are corn- then the fixed Jr(y)-invariant subspaces are also
posed of the basis vectors of ./I. simultaneously invariant for all Ak's. Indeed, if _# is

J r(y).invariant for all values of y, it must be invariant
under J'(yi). i.e. for every xE.# we also have

3. DETERMINATION OF THE FIXED Jr(d -INVARIANT J r(y)xe . 0Y. Since ai(yi) is not equal to zero, then
SUBSPACES .'

In order to determine lumping matrices M we need Aj = J r(yj)ia(y,). (51)

first to determine the fixed J'(y-invariant subspaces For eveiy xE.#, we have
./. There are two ways to determine them. Before
d0-cussing these approaches. we first consider the Aix=jr(y)x/a(y )eg. i=1. 2 . m) (52)
decomposition of J (y). which will be important for This result shows that .if is simultaneously invariant
implementing the determination of.//. for all Ak's. Thus we can determine the invariant

subspaces of JT(y) by only determining the simul-
(A) Decomposition o'Jr y) taneously invariant subspaces of all Ak's. We should(A)Decooitn matrx anecoiemphasize that this restriction is sufficient, but not

The Jacobian matrix can be considere ,d as au i eesr o '--nain uspcst esml
vector. Therefore, for any value of y, J r(y) can be necessary fcr jr(y)-invariant subspaces to be simul-• taneously invariant under all Ak.
represented as a linear c..~,nbination of m (m: n' When .1 reaction system is uni- and/or bimolecular.
constant matrices the elements of Jr(y) are only linear functions of the

j k5 'S. In this case, eq. (45) will have a simple form, i.e.
j(y= ay)A (45) ak(y ) is either constant or 'k,

where uk(y) are parameters, which are functions of y; jT(y) = A,+ , y. A,, (53)
the A.'s are constant matrices corsidered as a basis of k=
j T(y). The problem is how :o determine the basis Ak's. where m is equal to or less than n. and A,, can be the
There are several ways to achieve this task, and one is null matrix. It is easy to prove that the fixed Jr(y)_
as follows. The variable J (y) can be represented as invariant subspaces are simultaneously A0- and all A,-

=invariant. Suppose _# is a fixed Jr(y)-invariant sub-
jT(y)= j(y)Eij, (46) space for any value of y. Therefore, .A' must be

i~j= Iinvariant to J"(0). Equation (53) gives
where jj(y) is the (i, j)-entry of JT(y); E0 is the
elementary matrix, which is defined as the n x n matrix J T( 0 ) = A0 .
having unity in the (i, j)th position and all other For every x EJ', we have
elements are zero (Graham, 1981). If jpq(y) is equal to
c7h,(y). where c is a cnstint, we can combine these two Aox = JT(O)x E. It. (54)
terms as which implies that. .# is Ao-invariant. Similarly, #i' is

a,(y)=AJ,,y), {47) jT(e.)-invariant. Equation (53) gives

Ak =Ej + cEpq. (48) J T(e,) = Ao + A:.

In this way one can combine as many terms as possible A = J r(e,) -A.

in eq. 1461 to obtain eq. 14r,). where m is less than n2. For every XE#, we have
The remainder of this section is concerned with the
determination off. 4,x =Jtei)x- Aoxe.E/. (i= 1. 2 ..... m) (55)

One can see that. # is simultaneously all A,-invariant
(B) .4 ppr, wch I to determine ./ k =0. I . m). Therefore. we can determine the

it is easy to demonstrate that the simultaneously fixed invariant subspaces of Jiy) by determining the
invariant subspaces of all constant matrice, A,'s are simultaneously invariant ones of all Ak's.
J r y)-invariant. To establish this point let . /f rep- Suppose. /t is a subspace. which is simultaneously:
resent a simultaneouly invariant subspace for all A's. invariant for all .4,. It is easy to demonstrate that ./¢ is
-. for every x E ./I. we ha%, .,,kx e. // fr !! k. Using also invariant under ,' ,, and [1' (,.4,. For a

this relation. %xe obtain transformation A. we denote by Ins 1.4) the set of all
A-insariant subspaces. including the null subspace ,0:

,](-Ix= cj Y).lx.. (49) and the i-dimensional space .C Then we have the
- conclusion that all simultaneousx invariant sub-

Equation (491 shows that ff is imariant under J r(y). spaces for all Ak's are contained in Ins i Z ,, A,) and
If eq 145 ,atislies tl, restriction that we can choose Inv I ' _ AJ V , and I], , are constant

an appropriate value v, of ysuch that all 0k1 y, fs vanish matrices, and Inv (V,' -%) or I , ( ,,-I I cn be
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easily determined through their Jordan canonical corresponding root subspace is defined as
form. For any constant matrix A. there is a biggest A- .f,,,(A)= Ker [(a'+ r; /l- 2a,A + A (62)
invariant subspace called the root subspace corre- I

sponding to each eigenvalue of A. Using the Jordan The determination of A-invariant subspaces corre-
canonical form all A-invariant subspaces contained in sponding to nonreal eigenvalues is similar to that of
each root subspace can be readily determined, and all real eigenvalues.
the sums of the A-invariant-m$spacts in different root This approach can be applied to determine the fixed
subspaces compose the full set Inv (A) (Appendix B). Jr(y)-invariant subspaces. Let '., ..... , ;, a,
The invariant subspaces of J '(y) can be obtained by ± iT,, ..... a, + iT, be all distinct real and nonreal
examining which subspaces in Inv ert0 Ak) or eigenvalues of J rfly). Here t.,, a,, r, are usually func-
Inv (H__O ,4 k) are simultaneously invariant for all tions of y. We solve the following equations to find the
Ak's. One can achieve this task by examining whether constant vector solutions x's, if they exist.
the image vect rs of the basis vectors of a subspace in 
Inv (Y'.. Ak) or lnv(H'.OA, ) upon mapping by Ak [j T(y),;l [. [(a1jF lr

are still in the same subspace, i.e. any image vector can j =,

be represented as a certain linear combination of the
basis vectors of this subspace. +(jr(y))l],,I x=O. (63)

(C) Approach I1 to determine ,I (k= 1, 2. t; k'= 1, 2 ..... s: r,=0, 1 ..... p ;
There is another way to determine the fixed JT(y)- r=0, 1,... q)

invariant subspaces. Let KerA' represent the null
subspace of A'. We know that the Ker(A-,,14) and The subspaces spanned by the linearly independent
Ker [[H ,-,.'] of a linear transformation A constant solution x's of eq. (63) give the fixed J r(y).

are A-invariant, where r, r, are posit,.- integers and invariant subspaces with different dimensions.
Notice the difference between eq. (63) and the

Ker(A - KI4)'c Ker(A-2Kl.) " '1 . (56) preceding discussion for a constant matrix A. In eq.

Since the dimension of Ker (A - ,., I)', r = 1.2, ... are (63) J T(y) is a variable matrix and x are constrained to
bounded above by n, there exists a minimal integer be constant vectors. Therefore, in this situation we can
p,_ I such that not apply the concept of rooL subspace directly. The

largest values of ri and rj perhaps may not be equal to
pe and qj, respectively.

for all positive integers r. Ker (A -,;. 1 ,)P- is called the A difficulty can arise, when eq. (63) contains all
root subspace of A corresponding to ,;. and is denoted dist'nct eigenvalues of JT(y). The product of the
by RJAA). matrices on the left side ofeq. (63) can be related to the

Therefore, solving the equation minimal polynomial ofJ T(y), and then it becomes the
null matrix (Appendix C). In this case, any vector is a

(A -,)x=0 (r= I. 2...,) t58) solution of eq. (63) and we can do nothing with it.
for each eigenvalue will give A-invariant subspaces However. notice that when this situation arises, the
with different dimensions. In addition, we also have constant solutions correspond to the fixed J1 (y)-

] k 1 ] invariant subspaces with the highest dimensions. We

Ker [A - c,1)" K g. i (A -/,I,)" . know that the orthogonal complementary subspaces
L - of J(y)-invariant subspaces are J r(y)-invariant. The

(59) sum of the dimensions for a subspace and its com-

We need to solve the following equations to obtain all plementary one is n. Therefore, we can first determine

A-invariant subspaces with different dimensions: the fixed J(y)-invariant subspaces with the lowest
dimensions by the same way. Then their orthogonal

A- (AIt,),x=O, (k= 1.2 complementary subspaces give the fixed JT(y)_
invariant ones with the highest dimensions.

The Approaches I and II outlined above to deter-
mine the fixed J '(y)-invariant subspaces will be illus-

where tis the number of the distinct eigenvalues of A. trated by uni- and/or bimolecular reactions below.
Here we define

(A , ,, I,,. (61) 4. APPLICATION TO tNi- AND OR BIMOLECtI.AR

REACTION SYSTEMS
Sometimes .A has nonreal eigenvalue '", +irl, As examples of the application of the analysis

(T -± -,. For our purposes here. we aim only to aboxe. .we choose uni- and or himolecular reaction
tibtain real lumping matrices Ithis restriction may be systems. In this case the transpose of the Jacobian
removed, if desiredi. The-efore, we need o u.ermine matrix can he described as
the real null subspaces for nonreal eigenvalues.
In order to do so. we consider the null subspace .y , .64t
Ker[f(T 2 -r - 1 --- 27, .4 - , 2] ' ' for eT, r,, and the
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For a unimolecular reaction system, the kinetic equa- x, } can give the lumping matrix
tions are /

dy/dt = Ky, (65) 
(70)

where K is the rate constant matrix. The Jacobian
matrix for the unimolecular reaction system is just K. We can also obtain another lumping matrix by
and then elementary row operations (Lang, 1986) on the two

j r(y)= .K' 'f (66) rows:

For realistic chemical kinetics all eigenvalues of K (or 0). (71)

KT) are nonpositive real numbers (Wei and Prater. 0 0 1

1963). The rows of the new lumping matrix arc just another
b3sis of the same invariant subspace.

Example I In Section If we proved that the nonunique nature
A unimolecular reaction system with 3 species (Wei of M does not effect the form of the lumped equations.

and Kuo. 1969) is described as follows: For the M given in eq. 171), for example,.;.- can find an
infinite number of Ri satisfying MM= I,. We arbi-3

C- C2. trarily choose two:
2

o0.5 0 (0.4 0\

M, = 0.5 0 -q = 0.6 13 (72)

C0 1 1/

where C, C., and C 3 represent the three species: all It is easy to show that the kinetic equations for the
numbers are unitless rate constants. Let y, represent lumped system are the same in spite of using different
the concentration of species C,. Then the correspond- Aq. According to eq. (11)
ing kinetic equations can be described as eq. (65) and

-13 2 4 T and since
jT(y)=rKT 3 -12 6 (67) f(y)= Ky,

10 10 - 10 then

The eigenvector matrix X and the eigenvalue matrix A f() =M K M0. (73)

of K r are ForM, we have

(1 1 0.6 / -13 2 4 )/0.5 0)

1 1 -0.4 , (68) q)()=0 0 3 -12 6 0.5

\1 - 1 0 10 10 - 10

A -0 -20 0 . 69) 10 -10

0 -15 Similarly for Mf2 we have

From Section 2 we know that any linear system is -13 2 4 /0.4 0
exactly tumpable and any invariant subspace of J '(Y) 11
can be used to construct a lumping matrix. Then the f(y)= 0 91 3 -12 6 0.6 0
only thing we need to do is determining all ofthe K r_ 10 10 - 10/ 0 1
invariant subspaces, whose basis vectors compose the
lumping matrices. Considering that tht eigenvalues of = - 0 10t
K r are distinct, any subspace spanned by a subset of = 10 - 10)
its eigenvectors is invariant to it. For convenience let
x,. x, and x3 represent the 3 columns of X. Then They give the same kinetic equations for the lumped
Inv (K r) contains system, whose reaction scheme can be described as

Span:Spanx,SpanIx , , Spanx 3 , 1 -
Span"~~C C'.' p ' ~

Span ,x, x,. Span x,. x,, Span :x2, x,;.
d dt= K,. (74)

where £ l , 2
t is the concentration N eclor of (1The number of K '-invariant subspaces is finite. but whe ihn

C, and
the number of the lumping matrices is infinite, because 1
one can choose different bases to represent 2-dimen- K = - o to 75)
sional invariant subspaces. For example. Span K (0
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Example 2 Letting y, represent the concentration of Ci, it is
A uni- and bimolecular reaction system with 8 easy to write out the kinetic equations and the trans-

species (Li, 1984) is illustrated as follows: pose of the corresponding Jacobian matrix Jr(y).

2 dy 1/d t = - 2Y, - 2 yY2 + 4 Y3)'4

2C + C2 C 3 + C4 dy 2/dt= -2 2 - 2 , 'Y2 +4v 3 Y4

f2 dy 3 Idt = - 2y
3 -

4
y 3 v4 + 2)'1 Y2

C5  Cb/ 2 dy 4/dt= -2v 4 - 4 yy 4 + 2y, V2-
2 

(76)

.2 dysidt = -Y, + vI + 2v2 + V/2Y6
C,- C8

dY6 /dt = - V 2Y + 2Yv 3+Y

where the C,'s are species; the numbers are unitless dy1 1dt =- ,2y +Y1 +s- 8

rate constants. d
dy8 /d= -y, +2V4 +1 + Y

-2(1 +Y2) - 2
Y2 2v, 2Y2 1 0 I 0

-2y, - 2(1 +Yt) 2v, 2Y, 2 0 0 0

4Y, 4Y4  -2(1 + 2Y4 ) - 4y, 0 2 0 0

4yV3 4y3  -4)'3 -2(1+2 2v'3) 0 0 0 2

J(y)= - I1 0 0

0 ~ 2  2 0 0
0 0 -vV2 /

0 0 1 - I

According to Section 2. in order to determine the
lumping matrices we need first to establish all the fixed
JT(y)-invariant subspaces. This task can be done by

Approaches I and 11 given in Section 3.

Let us apply the Approach I. jT(y) can be rep-
resented by

4

jr(y) A, + I yXAk, (77)
kt=l

where

-2 0 0 0 1 0 1 0

0 -2 0 0 2 0 0 0
0 0 -2 0 0 2 0 0

0 0 0 -2 0 0 0 2
Ao= - 1 0 0

0 v2 -2 0 0
0 0 -v2 \2

0 0 1 1

0~ ~ ~ 000 - 2
-2 -2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0

A, 0 0 0 0 A2= 0 0 0 0

0 0 0
0 0 0 0 / 0 o 0 0 i\

0 0 0 0 1 0 0

0 0 0 04 4 4 -4 -4
A,= 4 4 -4 -4 "0 0 0 0

0 0o
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It has been demonstrated in Section 3 that all In this case, any linear combination of the eigenvec-
simultaneously invariant subspaces for A, (k=0, tors for each multiple eigenvalue is still an eigenvector
1 ..... 4) will give the full set of the fixed J 'ly)- of A and spans a 1-dimensional invariant subspace of
invariant ones and these simultaneously invariant 4. Also any two linearly independent such combi-
subspaces are contained in lnv (A), where nations for eigenvalue -2 span a 2-dimensional .4-

4 invariant subspace.
A= Y Ar (78) According to the relation between the invariant

k=o subspaces and the root subspaces, any A-invariant
Using the method presented in Appendix B one can subspace with a given dimension can only be either an
determine Inv (A). We have

-4 -2 2 2 1 0 1 0
-2 -4 2 2 2 0 0 0
4 4 -6 -4 0 2 0 0
4 4 -4 -6 0 0 0 2

A= 0 0
0 2 0 0

-0/ V o 2

0 0 1 -1

The eigenvalues of A are - 14: -2, -2, -2; -1 invariant subspace in a root subspace or a sum of

- - - \2; 0, 0. The canonical form of A -41, several lower dimensional invariant subspaces from
(Appendix C) is the following: different root subspaces. All invariant subspaces in a

2+

,(;'+ 2)A + 1 + \/2)

;.(, + 2) .+ 1 + /2)( + 14)

Notice that all the powers of the elementary divisors
are unity. so the algebraic and geometric multiplicities root subspace can be easily determined, and their
of all the multiple eigenvalues are equal: the Jordan combinations will give all A-invariant subspaces. For
canonical form of.4 is a diagonal matrix and A has full the sake of brevity, we use x, to represent column i of
eigenvectors. Eacb Jordan chain only has one vector. X. The 1-dimensional A-invariant subspaces are as

The root subspacc for each eigenvalue is spanned by follows:

the corresponding eigenvectors. Arranging the eigen- Span .OfO, Span i Span i2,X1-+ 11X3 +2 3 XI

vectors according to the order of their eigenvalues
given above, the eigenvector matrix X of A is the Span 1 ,x,+)x1,}, Span 7x+ - 2x+},

following:

35-23 2 218+81 \2 3 4

167 167 7 7

-132-190 2 -116-86 2 13 1
1 00 1

167 i67 14 14

264+46\ 2 232+ 172 % 2 8 -1
- 2 0 1 0 . . . ...

X 167 167 7 7

-404-288\ 2 - 102- 1622 2 1 6
-2 1 0 1 16 167 7

167167 7
I 0 I 0

0 - 2 0 I 0

0 2 0 I
0 1 1
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where 2,E. (the field of real numbers). Similarly we According to the results in Section 3 these subspaces
have all 2-dimensional A-invariant subspaces: compose the full set of the fixed J'(y-invariant

x 1subspaces. Choosing some bases for the invariant
Span {x1 , 2x + x 3 + 2.3 x 4 ., subspaces .// the corresponding matrices M are as

Span)x , 1 X x + I2 x ,. follows. For other bases M can have different forms.
The matrices for I-dimensional .1/:Span~x1 , 21x7+22 xs1 , .. '.-" ..

Span{2 1x,+2x 3 + 7 3x 4, fIx,+f' 2 x 3 +11 3x 4 M. I =(l1 +22 23 2, X + 73 0 0 0 0),

Span{2x,+21x3 + 3x4 I#Ix 5 +fi 2x6, M, =(2 -2 2 4 -2-2\2 2-\ 2

Span{),-X +2 2 x 3 +' 3x 4 , f/ 1 X- +f12X8 , 2-2\ 2 -' 1),

Span~x5.x,,, Span):(,x+ 2 x,fllx, + # 2x8 }, M3 =(I I I I I I 1).

Spanlx-. x. Here the subspace spanned by the row vector of M,
belongs to Span{x,+2,x,, and the subspace

where 2,. fl,e 4 and if a subspace contains the same spanned by the row vector of M 3 belongs to
number of 2s ahd lhs, the vectors ot and fl are linearly Span{2x 7 +- 2x8 }. Note that only when 2q and 2,

independent. In the same way we can determine all ,-

other A-invariant subspaces of dimensions higher take on special values (for M2 . 2 =2- 2,.x, =1: for

than 2. To save space we will not list all elements of M3, 21=2-1) will the subspaces belonging to
Ia Span{ox 5+ 7,x, and Span{,2x +2 2x8  be J (y)-

Inv (A).+I
After einvariant. For M, there are 3 linearly independent rowAfter examining which subspaces in nv (A) are

simultaneously invariant under all Ak's, we obtained vectors according to the different values the 2,5 can

23 distinct types of fixed J r(y)-invariant subspaces. take.
• The matrices for 2-dimensional./it:

(21 +O2 3 2, 21+23' 0 0 0 0)M4-= /31+ #2 #13 132 #1+93 0 0 0 0

M, 2 -2.V'2 4 -2-2X/2 2-V2 2-2,2 -v/2

21 +Ot2 3 2, 21 +23 0 0 0

M6( I 1 I
Of I + OE 23 22 21+23 0 0 0 0

1M,= ,2 - " -v "_ _ ' - .I
2 - ./ 2  4 - V. . 2 \ . . ,

The matrices for 3-dimensional.//:

00
Al= 1 0  1 0 0 0 0 .

0 I 0 1 0 0 00

I I 1 I I I I
2 -2, 2 4 -

2 2 2 - 2 2-2 2 2 1

,\r = +)(, X , 7 + 7 0 0 0 .

l + '3'1 1. t + 3 0 0 0

M 1l 1 2., 4 -2-2\ -. _ - \ . -

71 0 0 0 /
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The matrices for 4-dimensional ..f:

100

M,, 010 0

1 0101 0 0/

0 0 00 1 iI I

1 010 0

01 01 0 )
M I _ 0 0 0 01 '

21±22 23 22 
2
It+73 0 0 0 01

N#1f+z2 fl3  fl2  #l1 f 3  0 0 0 0/

The matrices for 5-dimensional .1

2 \ 2- o /.J2o - #,2f

1 0 0The matrices for 7-dimensional i'

I () 0 0

0 2 0( 2 -. 2 2 -2\1 2 - 2 (10 -~

The matrices for 6-dimensional .It:

I

1 0

jI A1I 03

0 21 /1)
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2, fi,. , fl, y. 6j¢E. If a matrix contains the same For the purposes of illustration we apply the Ap-
number of o,'s and fl,'s, the vectors 2 and /I are linearly proach II in Section 3 to determine the corresponding
independent, matrices of the fixed J' I y-invariant subspaces. The

By definition, a set S of subspaces of R" compose a eigenvalues of J r(y) are - 2 - 2y, - 2y, -4y_ - 4.v
.attice if and only if 1 and R" belong to Sand in I - 0.0. The canonical
addition S contains the intersection and sum of any form of J r(y)-;J. (Appendix C) is as follows:

1+2
2+ 2/+ + x,21

/AA;.-2o',;+ 1I + \ 21(.) . y)

where 1.y)= ---- 2 v 1 . . .-2v, -
4 v--- 4

i.,. Notice that

two subspaces belonging to S (Gohberg et al.. 1986). all the powers of the elementary divisors are unt and

We can demonstrate that all the fixed J 'I y-invariant the minimal polynomial is the rd o f ar e poi . -
sthe product of the poI'-

subspaces with .0 and compose a lattice. Let ." nomials with degree I for all distinct eigenvalues.
.#f" be any two fixed JT(y)-invariant subspaces. If Solving the equation
x .#'rL"". ,we have jr(y)xE.It' and J rly)x C f,
so JT(y)xE.if'n.if" and .if'r .it" is Jr(y). [J y-/,tJ"x=0, 179.

invariant. Now let x E. #'+.#". so that x = xI + X2 1 we find that for any r, > I the solutions consisting of
where xtE.tY', xE.11". Then jT(y)x=jTy x constant vectors are the same as those of r=.

+JT(y)X2 E.#'+.f". Therefore, .'+.i" is J(y)_ Therefore, only r,= I is considered. The results ob-

invariant as well. In accordance with the definition of a tahed are as follows:

lattice, all the fixed J r(y)invariant subspaces with t i

and R' compose a lattice. This conclusion is easy to ,.,=-2: M, containing M,1 and %M4,:
check for all fixed JT(y)-invariant subspaces corre-
sponding to the M,'s given above. ,- - l 2 .I4,

This property has some utility here. We will find .,=0: Al3.
that some fixed J r(y)invariant subspaces are irreduc-
ible. Here an irreducible invariant subspace .it of Solving eq. (79) for .,=-2 gives three linearly
JT(y) means that it cannot be represented as a direct independent constant solutions of x, which are the

sum of nonzero JT(yj-invariant subspaces ./' and basis of. /t,. Note that the subspaces spanned by the

.":otherwise .4 iscalled reducible. Let.#, represent row vectors of ,l 1 and M.,. respectively, are subspaces

the subspace spanned by the row vectors of ,. For of ,. Therefore, when Al, is given AlM and Ml are

the present problem the following fixed J(y)- also obtained. The same situation appears in the

invariant subspaces are irreducible: following results. These results also show that the
corresponding invariant subspaces are associated with

dimension 1: .fl, .'2.¢ .f 3: the constant eigenvalues.

dimension 4: . tSimilarly solving the equation
dimension 5: .#16, . [Jty 1 -)Il][J sy)-_ ,jx 0 80)

dimension 6: . /'1,0, . It , , we obtain

dimension 7: . i. It, 3. -2 2 v - 2 v, - 4y3 - 4. 4 -2: ' ,.

Other reducible ones can be obtained from the ir- ;.=-2. ,. = - I - ., 2: .M1,, containing . and .

reducible fixed J r(y)-invariant subspaces. We 'an also - 2. 0 -0: l, containing l, and M,.

find that some fixed J r(y)-invariant subspaces are
contained in other ones. There are also some chains in /, 1 -\ "1=:A M_

the fixed J r( y)-invariant subspace. One of them is the Solving the equation
following:

The above property of all J r(y)-invariant subspaces is gives
not closely related to the present analysis. However. it

does have significance in the study of other appli- ,= 2-2v -2v 2 - 4 v,-414, , -2. =

cations. containing .\l,
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2.= -2-2y -2Y 2 -4v-4 v, 4'= -2, A, =0: M 2o This shows that t 1. Y,. v3 and t, do not change for
containing AM,.; ,jMjy. Then the eigenvalue - 2- 2v - 2v2 - 4v

- -4y 4 will bethe same for J rly) and J '(A-l,1 Ay), and
.2, - 1 - \ 2. 0: M,, containing M, A, can be also used for exact lumping. Thus all 23

and M ,. distinct types of matrices M are lumping matrices.

Until now we have determined all Al except M 2 1 . Substituting any Al into eq. I11) and arbitrarily
Al., and Al_3. We cannot deterhine them by solving choosing two different generalized inverses At. "e
the following equation containing all distinct eigen- obtain the same differential equations for the lumped
values model associated with AI. When the corresponding

eigenvalues of M are constant, say for M,. kf,. A 3.
[J 4(y)-;,,"][JT(Y);,l][JT y)-;,1][Jr(Y) M, 3, M,, the lumped systems are linear. Their differ-

-;4.Ijx=O, (82) ential equations are. respectively, as follows:

because the left side of eq. (82) is associated with the d'dt = - 2. f85)
minimal polynomial of J (y) and becomes the null
matrix. However, notice that the vectors orthogonal d dt= -1l + \ 2). (861
to all row vectors of A, 3 and M 2 are d'dt =0, (87)

V-(O 0 0 0 T, dI,

dI -2v,=(0 0 0 0 26 -2 6 / 2.0 -= (088
respectively. They can be respectively obtained by dt 0 0 0 -2

solving the equation \}4 0 2 2 0

[J(y(-Al]x =0 (83) /

for eigenvaoies - I - 2 and 0. Similarly, the column d -(I+\ 2,
vectors of the following matrix V are orthogonal to all .(89)
row vectors of M,,: dt 3 -2 (89

(0 0 00 1 _fl :t _C r-

0 0 0 /23 6 -7 - /2y When the corresponding eigenvalue spectrum of M
contains - 2 - 2y,-2y2 -4y 3 -4y 4 , say for M,,, the

These two column vectors can be obtained by solving lumped model is no longer linear:

[J(y)-J,,[J(y)-;.j,]x=O (84) d,/dt= -2, -2j h +4W54

for 4='-, - 2 and" ,; =0. After they are deter- d.P2/dt= -2. 2-21 92+434
mined, AM 3, kl, and Al,, can be obtained from their
orthogonal complementary subspaces. Now all M d
obtained by the Approach I are also completely d.' 4 ,dt= - 2

. 4 -4. 3 ',+2 1, 2  (901
determined by the Approach II presented in Section 3.

From Section 2we know that for nonlinear systems d, dr = - 2 - 2 +1 2 1 1 + 2(
only some of these fixed J r(y)-invariant subspaces can d 6 ,idi = - 2, + 2, -(I + "\. 2).',
be used to construct the lumping matrices. The re-
maining task is to examine which of them satisfy the where
sufficient condition for exact lumping. Examining M, . (i- I 2. 3. 4)
to M,, we can see that except for A(j = 12, 16, 17, 19,
20-23) all other matrices M, are related to constant 'Y 2y .
eigenvalues, and therefore they can be used as lumping .9 = - \ + v+ .

matrices.
Let us consider Af further. They have a common We have obtained 23 distinct kinds of lumping

form as matrices. Actually there are an infinite number of
lumping matrices, if we give different values for par-

f(14 . ameters x, fl, ,' and o. We can also construct othtcr

(0 B lumping rfiatrices by elementary row operations on
The generalized inverse of .Al1 should be of the form the rows of M\. For example. letting =I for AM, -

we obtain

where B=Ifi .Then we have

(14 0) (
V A ) /BB 

I I I
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Similarly letting t, =0, x, = I and using lumping matrix M,,:

elementary row operations on the two rows of M,
gives el + C2  C3  + C,

N. 4 /
I 1 0 0 0 0 2

(0 0 0 0 1 11 1" /

Letting a=0, 3=1 or x= 1, =and using different /
elementary row operations on the last 3 rows of M, 3, ,
we have Cf

1 0 0 0 Ci=Ci (i=1. 2,3,4), es=C,+C 6 , C6 =C,+CS.

0 1 0 0 lumping matrix M2 3 :

0 0 1 0 0

M", 0 0 0 1 C \, + 2 : _ C 3  + C,
\4 /

0 00 0 1 1 0 0 2\ /

0 0 0 0 0 0 0\

0 0 0 0 0 0 0 1 2,

% , /

1 0 00 2-
0 1 0 0 C, C,

0100 1

0 0 1 0 0

M2 3 = 0 0 0 1 C,=C, (i= 1,2,3,4), C=Ci+, (i=6, 7),

0 0 0 0 1 0 0 0 11 =CS+C'.

0 0 0 0 0 1 0 0 lumping matrix M 3 :

These special cases have a particular significance
argued below. Usually the lumped model of a uni- C C 2  C + C
and/or bimolecular reaction system does not follow a 4
uni- and/or bimolecular reaction scheme. However, ' - I2 2
there is a special group of lumping matrices called
"proper lumping matrices" (Wei and Kuo, 1969), each I

column of which is a unit vector e,. It has been proved C5  - C6

(Wei and Kuo, 1969: Li, 1984) that for proper lumping
the lumped model follows a uni- and/or bimolecular ej C (i= 1. 2, 3. 4, 5. 6), = C, + C,.
reaction scheme. In Example 2 there are some proper To summarize, by these two examples we have
lumping matrices, such as M , M',-7, M2 0, M 3 and
M' 3.The corresponding lumped models are as fol- illustrated how to apply the methods to determine all

lows: the lumping matrices. First we need to determine all
the fixed JT(y)-invariant subspaces. There are two

lumping matrix M.,: approaches to achieve this task. One is associated with

2 the decomposition of J r(y) into a linear combination
el - C 2  of some basis constant matrices and the subsequent

determination of the simultaneously invariant sub
spaces for all these constant matrices: the other one is

= C,, C2 = - . dependent on the determination of the fixed null
subspaces of the different products of the ;.-matrices

lumping matrix kf 7r: J T(y) - ).,I for all distinct eigenvalues. After the deter-

2 mination of all the fixed J ( y)-invariant subspaces. we
C + ;_C t C, + need to examine which of them satisfy the sufficient

4; , 7 condition for exact lumping and then we use these
, "2 ...2 subspaces to construct lumping matrices. The results

show that for uni- and or bimolecular reaction sys-
C tems one can determine all possible lumping matrices.

These examples are very simple. however, they ilus-
C, C, i= 1. 2, 3, 4), ( ,. trate the methods which can be applied to other more

comphcated systems.
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S. CONCLUSION AND DISCUSSION a(y) kth coetticicnt of a jinear comrbiiation of

In this paper a general analysis of exact lumping has constant matric% for J 1 y)

been given, which can be used for any system de- C, ith species of a reaction s),-em
scribed by a set of first order ordinary differential (7. ith species of a lumped system
equations with any degree of nonlinearity. Uni- and/ c constant
or bimolecuiar reaction systems are only special cases dk(.) kth invariant polynomia,
of this general analysis. eki partial multiplicitV

A systematic method to determine all the fixed J,,(Y) ith element of f(yl
invariant subspaces for the transpose of the Jacobian Inv IA) set of all A-invariant subspaces

matrix of the kinetic equations and all the lumping i positive integer

matrices was developed. Using the generalized inverse Jo (Y) (i. j)-entry of matrix J(yj

of the lumping matrix, the differential equations of the Ker A' null sub 3pace of A'

lumped system can be readily obtained, and the non- I positive integer
unique nature of the generalized inverses does not .1 invariant subspace of J t(y) or A

effect the form of the lumped equations in the exact F null subspace of M
case. n dimension of vector y

In the present work lumping is considered to be 1 dimension of vector 9

generated by a linear transformation. In spite of a P minimal value of positive integer r foi the

system being nonlinear, this paper shows that under largest Ker (4 -. ,)'
appropriate conditioAs linear transformation can still qj minimal value of positive integer rj for the
lead to exact lumping. If a nonlinear system is exactly largest Ker [(a- + r' )I - 2a JT(y)
lumpable in this sense, it must possess a degree of +(jT(y))2],

partial linearity. Therefcz. it is natural that the lump- q,j (i, j)-entry of Q(y)
ability of a nonlinear system is related to some fixed -4 field of rea' number
invariant subspaces and the invariance of the corre- -. (A) root subspace for real eigenvalue /., of .4
sponding eigenvalues for the transpose of the Jacobian -4, (A) root subspace for nonreal eigenvalues a,
matrix. The partial linearity of nonlinear systems is +iT of A
useful not only for simplification of a complicated _V" n-dimensional real space
system, but it also provides physical insight. For r nonnegative integer
example, eq. (87) shows that the fixed invariant sub- r, nonnegative integer
space spanned by the row vector M 3 is connected with S set of invariant subspaces
the property ofmass conservation. Using the same s positive integer
approach for classical mechanics systems we could t time or positive integer

yield other conservation properties. Yk kth element of vector y

Although some useful results about exact lumping
have been obtained, there is still further work to do. Vectors and matrices

Systematic application of this analysis to complex Capital letters represent matrices, bold-face lower
reaction systems needs to be considered. However. in case letters represent vectors.
the treatment of actual reaction systems. the first A constant matrix

problem encountlered will likely be their non-exact A, constant matrix

lumpability. Sometimes, even if a system is exactly Ak constant matrix

lumpable, the results may not meet practically desired A (y) 2 x 2 function matrix
goals. For example. in the COHOO, combustion B matrix
system we would like the easily measurable concen- B generalized inverse of B

trations of CO. CO,. 0O. H,0 to be unlumped. With c h-dimensional arbitrary constant vector

this constraint, the system likely can not be exactly Ej, clementary matrix with I as its (i. j)-entry.

lumped, and we have to lump the other radical species and 0 for the rest of the elements

of the system approximately. Developing a general e. unit vector with I as its ith element, and 0

approach for approximate lumping is very important for the rest of the elements
for realistic problems. The exact lumping analysis f(y) n-dimensional function vector

presented above should form a rigorous starting point fti ) -dimensional function vector

for the development of approximate lumping. I identity matrix
J(y) Jacobian matrix of f(y)

4cknowledqement The authors ac; -oledge support from J i(y) transpose of Jacobian mairix
the Air Force Office of scientitic research. J,(;-) Jordan matrix

j,,[Ajy] Jordan matrix
J P,(i. Jordan block for real eigenvalue A,

NOTATION r,(q.,) Jordan block for nonreal eigcnv.ues
Scalars (T) + T J

a defined as - , K rate constant matrix
K, 2 2 submatrix
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, ith eigenvalue of a matrix APPENDICES
2(y) eigenvalue vector The material in these Appendices concerns certain matrix

A diagonal eigenvalue matrix of K with ii operations and properties, particularly relevant to this paper.
as its ith diagonal element Although this material may be found in the literature, we

a real number present it here for completeness and convenience of the

T real number reader.

Appendix A: Jordan form of an n x n real matrix
Symbols In chemical kinetics we usually treat real matrices, and

any property related to the lumped therefore, in the appendices we only deal with them. All the
system results in the appendices can be directly extended to treat

0 null vector nonreal matrices (Gohberg et al., 1986).

0 null matrix Let A be an n x n real matrix. All distinct eigenvalues of A
are A,, A2, ... I .,, al ±iT, I a2± 2, .... a+it_ Each one
may have multiplicity higher than 1. Here, A, a, and r, are IL

REFERENCES real numbers and T, are positive. For a real matrix nonreal

Bailey, J. E., 1972, Lumping analysis of reactions in continu- eigenvalues appear in complex conjugate pairs. There exists a

ous mixtures. Chem. Engng J. 3, 52-61. real similarity transformation matrix S such that

Bailey, J. E., 1975, Diffusion of grouped multicomponent S- t AS=JJ,(;.), (Al)
mixtures in uniform and nonuniform media. A.I.Ch.E. J.
21, 192-194. with J,(;.) being the Jordan matrix of the form

J (P;
J ( I) . (A2)

J.';A.,)

doJ ,(o,, r,)

whereJP,;,,),J o,(aj. T, l(p= 1,2 ..... p,; q 1,2 ..... q)are

Golikeri. S. V. and Luss, D., 1972. Analysis of activation called Jordan blocks with the following forms. respectively.

energy of grouped parallel reactions. A.I.Ch.E. J. 18, The meaning of , ind q, is given below.

277-282.0
Golikeri, S. V. and Luss, D.. 1974 Aggregation of many /0

coupled consecutive first order reactions. Chem, Engng Sci. 0 . 1 . 0
29. 845-855. 1P'(,) =A3)

Graham, A., 1981. Knonecker Products and Matrix Calculus: •), (A3)
with Applications. Ellis Horwood. New York.

Gohberg, I., Lancaster. P. and Rodman, L., 1986. Invariant
Subspaces of Matrices with Applications. Wiley, New York. 0 0.



Exact lumping in chemical kinetics 1429

K, 1, 0 ... 0 \ J',(A)-invariant. It can be also proved that any J,,(A1 ,I-

0 K, 1, 0 invariant subspace is of the form Span {e, e_ ..... e,'.
Therefore, J,,(A,) only has e, nonzero invariant subspaces.• ~ Smlry .,A ) ..., do,(A,) havee2. . . , in a an

r,(r)= , (A4) Si ilrl 21,( ,) -' e,"n ain

subspaces. respectively. Here e. ..... ep, are the corre-
, '2 sponding dimensions of the Jordan blocks for ;.,. If we

0 Ki  expand ei to n-dimensional vectors by adding zeroes at the
. end of each e,, all these subspaces are also J.,(A)-invariant. In

where 1, represents the 2 x 2 identity matrix and addition, the sum of any set of the invanant subspaces
corresponding to different Jordan blocks for A, is also J,,,IA)-

( ( 5) invariant. Considering that there are p, eigenvectors corre-
K= .a (A5) sponding to A1, it follows that their linear combinations will

give other eigenvectors for 2.. They compose an infinite
In the expression (A2) the blocks JP,(.,) and J.,(a, r,) are number of I-dimensional invariant subspaces, when p, > I.
uniquely determined by A up to a permutation of their All these considerations give the full group of J.,(;)-invariant
ordering. subspaces corresponding to A,. Let

Let JJ,). P(A,) be all the Jordan blocks in ex- P,
pression (A2) for eigenvalue A, of A. The positive integer p, is a,= e,1 . 'H6)
called the geometric multiplicity of Ai. The dimension of each
Jordan block is called the partial multiplicity an-I the sum of Then the biggest J.,(A-invariant subspace corresponding to
all partial multiplicities for Ai is its algebraic multiplicity. The A is Span {e . e2, . . . , e. }, which is called the root subspace
partial multiplicities of the Jordan blocks corresponding to of J,(A) corresponding to , and is denoted by -1, [J ,(A)].
the nonreal eigenvalue a,+ir (or o -ir 1 ) of A are, by All J_,(A)-invariant subspaces considered above belong to it.
definition, the half-sizes of the blocks Jq,(a1 . rJ). The number Similarly we can construct all other J,,(A)-invariant sub-
of the blocks corresponding to (as,, T,) is the geometric spaces belonging to J 0,A)],and all the sums of invariant
multiplicity of a,+ir, (or a,-ir), and the sum of all partial subspaces belonging to different root subspaces give
multiplicities for (aj+ir,) (or a,-ir,) is its algebraic multi- Inv [J,,(;)].
plicity. Obviously, the algebraic multiplicity of an eigenvalue There is a one-to-one correspondence between Inv [J,,(.)]
is not less than its geometric multiplicity. When all partial and Inv (A). Inv (A) can be constructed in the same way
multiplicities are equal to unity, the algebraic and geometric except for using eigenvectors and generalized eigenvectors of
multiplicities for each eigenvalue art ,;qual, and in addition, A instead of e,. If we know the eigenvalues and the corre-
when all eigenvalues are real, the Jordan matrix becomes sponding Jordan form of A. its eigenvectors and generalized
diagonal with the eigenvalues as its diagonal elements. In this eigenvectors can be readily determined by solving eq. (B3).
case S is the eigenvector matrix of A. The Jordan form of A is easy to work out when we obtain the

canonical form of the A-matrix A -21,. This will be discussed
Appendix B: Inv(A) in Appendix C.

The set of all invariant subspaces of a matrix B and the set When A has nonreal eigenvalues and we are only
of its similar matrix SBS- are related as interested in real invariant subspaces for a pair of conjugate

nonreal eigenvalues, then the Jordan blozk is given by
S[Inv(B)]=Inv(SBS-') (BI) expression (A4) in Appendix A. The only difference is that

with S being a similarity transformation matrix. Therefore, it any Jordan chain now has an even number of vectors: e ,
is desirable to use similarity transformations to reduce a e2 ..... e2 , and each Jordan block contains a unique A-
matrix to the simplest form for the determination of the set of invariant subspace with dimension 2.
all invariant subspaces. The "simplest form" here is the Appendix C: canonical form of A-matrix A-;.I,
Jordan matrix. Let B=J.,(A), and eq. (BI) becomes A-A1m is called the A-matrix of A. Using elementary row

S[Inv(J0 ,(A)]=Inv [SJo,()S - ] and column operations A-AI, can be transformed to its

Inv (A). (B2) canonical form:
= lnv (). (A2

To determine Inv (A) we need to determine Inv [Jo,(A)]. d

First let us consider a set of vectors xI x2 , x, such d,(A)
that

Axi =Ax," d,(A) (CI1)

Axi=Axi+xi I . (i=2, 3. 1) (B3) 0

We call x , the eigenvector and x, (i 2! 2) generalized eigenvec-
tors corresponding to eigenvalue A and x,, x, .... x, are
called a Jordan chain. 0

Without loss of generality we consider the first Jordan
block in expression (A2). where r is the rank of A -AI,; d,(A) are called invariant

polynomials, which are polynomials of . with the leading

0, 1 0 0 coefficient I and d,(A)ld,)A) for k= 1, 2_. ,r-l1. Here
/A 1 d,(Ai)d,, ,(A) means that d,.,(A.) is divisible by d,(;,).

S, ... 0 Especially note that. d,(A( is called the minimal polynomial of
"(A' . A and satisfies d,(A I=0.

J ( = . B4) Let A,, , ...... ;., he all the distinct eigenvalues of A. Then: 1 d,(A) can be further decomposed as

0 0 ... A d(A)=(A-,;(' '(.-, ('... -).i"
'
. (k= 1. 2 . r)

(C21
Let the dimension of J 'r(A, be e, Since Since we have the property di(;.)dk , ('. then it follows that

Je <,(A . _< e A _ , , e=1.2 . t (C3)

~ 0=2. ,
t onsidering that ;,. ,.... are distinct and

all subspaces spanned by a Jordan chain e, e2 l .. e, are d,(A)d,. ,IA) for all k. so all e,, are not equal to zero.
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However, other e , can be zero. Considering all d,(k) will give The terms above not being I are called elementary divisors of
A-I.. It can be proved that each elementary divisor is

.-. ). ".- -i"•.....IA-A.,)" related to a Jordan block with dimension e,,; the number of

- , .
:

... the elementary divisors corresponding to eigenvalue i, is its
(C4) geometric multiplicity: N'ex, is the algebraic multiplicity

. . . . . . . .. . . . o f ;.j

-I,
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Abstract-The direct approach to determining the constrained lumping schemes presented in a previous
paper is applied to nonisothermal first-order reaction systems. The constant basis matrices of the transpose
of the Jacobian matrix for the kinetic equations .e, reptaced by a set of rate constant matrices at different
temperatures, which properly cover the desired temperature region. The Mobil "10-lump cracking model"
is used as an example to illustrate this approach.

9.

I. INTRODUCTION 2. THE DIRECT APPROACH FOR NONISOTHERMAL

Our previous paper (Li and Rabitz, 1991) presented FIRST-ORDER REACTION SYSTEMS

a direct approach to determining the constrained Our previous papers (Li and Rabitz, 1989, 1990)
lumping schemes for an arbitrary reaction system. presen,,;d a general analysis of exact and approximate
When the system is isothermal, the transpose of the lumping for a reaction system in a desired region 0 of
Jacobian matrix of the kinetic equations can be re- the composition Y-space. The original reaction sys-
adily decomposed as a linear combination of a set of tem with n-components can be described by
constant matrices. They are viewed as a basis of the dy/dt = f(y) (1)
transpose of the Jacobian matrix. Using the concept
of the simultaneous minimal invariant subspace to all where y is an n-composition vector; f(y) is an arbit-
these basis matrices over a given subspace, the direct rary n-function vector, which does not contain t

approach will supply the best constrained lumping explicitly. If the system can be exactly lumped by
matrices with different dimensions. For a nonisother- an A x n real constant matrix M with rank
mal first-order reaction system the transpose of the h (h < n), then for
Jacobian matrix is the transpose of the rate constant my (2)
matrix, which is a function of temperature and als,M
has a set of constant basis matrices. Therefore, the the lumped system can be described as
direct approach can, in principle, be employed to dg/dt = Mf(M ) (3)
determine the constrained lumping matrices for this
system if one can find the basis matrices. Unfortu- where the subspace # spanned by the row vectors of
nately, the rate constants are generally exponential M is a fixed invariant one to the transpose of the
functions of temperature and then it is not easy to Jacobian matrix JT(y) of f(y) for any value of yefl,
determine the constant basis matrices of the transpose and M is one of the generalized inverses of M (Ben-
of the rate constant matrix. However, the basis matri- Israel and Greville, 1974) satisfying
ces can simply be replaced by a set of rate constant MM = l. (4)

matrices corresponding to different fixed temper-
atures in the desired temperature region. When the If jr(y) does not have a fixed invariant subspace
number of chosen constant matrices in the set is large which has a given dimension Al or satisfies some
enough and the temperature region is properly coy- desired restriction, then eq. (3) can still be used to
ered by the chosen temperature points, the results will describe the lumped system approximately. In this
be the same or close to those obtained by using the case, one needs to find a subspace .M which meets the
basis matrices. In Section 2 the theoretical basis of the requirements and is as nearly Jr(y)-invariant as pos-
direct approach for application to nonisothermal sible. This lumping matrix is the best one for the given
first-order reaction systems is presented. The Mobil dimension Ai and under the required restriction. The
"10-lump cracking model" is used as an example to accuracy may not be satisfactory if i is too small.
illustrate this method in Section 3. Finally, Section 4 When f) is the whole n-dimensional composition
presents a conclusion and discussion. space and M has orthonormal rows, M' is the best

choice of a for approximate lumping (Li and Rabitz,
1990). Considering this we will choose orthonormal

'Author to whom correspondence should be addressed. rows for M and consequently M = M r.

583
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For a nonisothermal first-order reaction system the In order to determine Im fB AB .... 4' ' B) we can
kinetic equations are the following: first determine the kernel by solving the following

dy/dt = K( T)y (5) equation

whE-e KI TI is the rate constant matrix, which is a BT
function of temperature T. According to eq. (3) the T

lumped system can be re'fesented as (X = 0. (12)

d !dt = 1Ki T) Br{A Tv - I
= MK( T)Mr. 6

MK( T )M Tj (6) Suppose the dimension of lm X is n -I. Alter the

For the constrained lumping problem the lumping determination of X the matrix representation M' of
matrix M can be represenicd as the smallest A-invariant subspace .# with dimension !

over Tm B can be determined by solving the equation

M= MG)
(7 XMTO (13)

where MG is given and also required to satisfy MCMT It is straightforward to dct .rmine the minimal sim-

= - ,; M, will be determined and satisfy M0nf, ultaneously A, (k = 1,2. m)-inari .it gubpace
= i, (where r is the row number of MD) as well. I he . # over the subspace Im B. We only need to deterrnmnc

direct approach to determine the constrained lumping X first by solving the following equation:
schemes with different i has been presented in our
previous paper (Li and Rabitz, 1991). This approach F B
is based on the concept of the minimal JT (y)-
invariant subspace over Gm M r . Again following the BriAt
previous work on exa.t lumping, Jr(y) can be de-
composed into a linear combination of appropriate
constant matrices A, (k = 1, 2 . i.n. m), i.e. BT(Ar

jT(y) ak(y)A, (8) " X=0 (14)

k=1 B T

where m is less than n2 and the Aks are viewed as a B Am
basis of JT(y). When 0 is the whole n-dimensional
space, the minimal simultaneously all Ak-invariant
subspace over Tm M' is the minimal Jr(y)-invariant Br(A Ty,-I
one over IM MT .

in order to understand the basic idea of the direct
approach in the application of the nonisothermal where Sk (k = 1 . m) is greater than or equal to the

first-order reaction system, we will briefly draw from rank of Ak, and then solve eq. (13) to determine M. In

our previous paper about the basis of this method. It the current problem B = MI , T4 = Y and the result-
is well known that the minimal invariant subspace ff ant M is the exact lumping matrix containing MG with

for an n x n matrix A over a given subspace Im B the smallest row number !.
coincides with When we want to proceed further to find good-

quality approximate lumping matrices with u less

+€= lm (Aj B) = lm(A' B) (9) than 1, we need first to determine higher-dimensional
So .=o Tm X which are as nearly as possible orthogonal to

for every integer s greater than or equal to the rank or
the degree of a minimal polynomial for A in particu- M,

lar, . = I Im(AjB) (Gohberg et al., 1986). We MGA r

j/=O

know that

3-I MG(Ar)z-"
YIm (AjB)--- Im(B AB ... As-'B) (10) '(5

and the orthogonal decomposition of the n-dimen- M,
sional real space _4' is BG A r

BrAT

.=Im (B AB ... 4'- B) ( Ker

BT(AT)T I

(0i) Then the resultant .#¢s will be as nearly all 4 ,-
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invariant as possible. The corresponding Ms are good ing to different temperatures in the desired temper-
approximate lumping matrices containing M, with A ature region. When the number of the rate constant
less than 1, This consideration is equivalent to find- matrices is large enough (i.e. some of these constant
ing the subspace Im X, which is simultaneously as matrices compose a basis) and the temperature region
nearly orthogonal to Im Mr , Im(MGAr) ...... is covered properly by the chosen temperature points
Im [M A y -t, Im MG, ImMGA)....... (i.e. the different regions of temperature are appro-
Im [MG(A')'- - ]r as possible. Tiiff ca'n be readily priately weighted), the results should be the same or
determined by using the concept of the degree of close to those obtained by using the basis matrices.
coincidence between two subspaces given in our pre- Since this is easy to realize, the approach above is very
vious paper (Li and Rabitz, 1990). useful for those systems whose Jacobian matrix can-

Let Q(G)r, (k = 1, 2,....m; i = 0,1,... s, - 1) not readily be decomposed to a linear combination of
be the orthonormal matrix representation of constant matrices. Let K( T) be the rate constant
Im [M,(A[)]T. Using the Schmidt orthogonalization matrix at temperature T, then eq. (15) becomes
method one can transform [MG(Ar)i]T to Q(G)'.
First we define a matrix M j

M .5k -I
Y = Q(G)kQ(G)k,). (16) MGK(TI)

If we choose an orthonormal basis for Im X, i.e.%M GK (T l -

. .xrx = I,_ ,  (17)

then the problem becomes the determination of X,
which gives the smallest trace I

min tr X7 YX. (18)
XTX = I-

The solution can be readily obtained by determining MGK(T) - - 1 _
the eigenvalues and eigenvectors of Y(Bellman, 1970).
The n - h eigenvectors with the smallest sum of their Thus the constrained lumping matrices with different
eigenvalues are X and the rest of the eigenvectors A can be obtained by the corresponding eigenvectors
compose M r . When all the eigenvalues are distinct, of Y.
the solution for M with a specified A is unique. If there If the subspace * spanned by the row vectors of M
exist multiple eigenvalues, the sets of eigenvectors is Jr(y)-invariant, we have
with the same sum of eigenvalues are all solutions.
When the eigenvectors of Y are arranged according to MJ(y) = Q(y)M (21)
the nonincreasing order of their eigenvalues, the last where Q(y) is an A x A matrix. It is easy to demon-
n - h eigenvectors are X and the first h eigenvectors strate that A is also invariant to any analytic function
are MI. Therefore, the eigenvector matrix R of Y of jT(y). Let fT[JT(y)] be an analytic function of
supplies all the best approximate lumping matrices jT(y). It can be expanded in a Taylor series:
with different A. #

There are two further issues we need to consider. fT[jr(y)] = C[jT(y)(

First, sometimes MGAT is a null matrix. In this case (22)

the contribution of Ai to the determination of the
lumping matrix can be neglected. In order to avoid we [ind a r fs
this situation, we can use the resultant M from other
A, with row number I higher than MG as a new MG to
calculate MGAT. IfMG A for the new Mr is still a null f [r =0 c[J(y)]i (23)

matrix, we can use the resultant M with row number 2
higher than the original M, as a new M, to calculate Then we have
MGA and so on. Second, in order to satisfactorily
assure that the resultant M is orthogonal to MG, one Mf[JT(y)_. M c[J(Yli

can multiply M, in eq. (15) by a large positive con-
stant c. = Z ci[Q(y)]iM

For the nonisothermal first-order reaction system ,=o

we have =f[QT(yjjm (24)

Jr(y) = KT( T). (19) where

Since the rate constant is an exponential function of
temperature T. it is not easy to determine the basis Jr[QJ(y)j = c[Qr(y)], (25)
matrices of Kr T). However, all the Aks can be re-
placed by a set of rate constant matrices correspond- and we have used the relation of eq. (21) in the
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deduction of eq. (24). Equation (24) shows that .# is NA

fr[Jr(y)]-invariant. This is very useful for the first-
order reaction system, because the analytic function
e K(T

" of K( T) can often be determined experi-

mentally. The solution of eq. (5) is eKITIy(0). Let y1(0), N, A,

y2(0) .... y,(O) be n linearly independent initial
values of y and compde the matrix Y(0). Y,(r),
y,(r) . y,(r) are the corresponding solutions for Ph K

t = r and compose the matrix Y(r). Then we have
R Kp G C.

)Y(.) = elT)r y(0).(2)K. Kr 

Since Y0) and Y(r) can be determined experimentally
and Y0) is nonsingular, cA(T" will be obtained by

e -
K r = Y(r) Y - '(0). (27) C

In many realistic problems, the rate constant matrix Fig. 1. 10-Lump cracking model kinetic scheme: P, = wt %

K(T) is usually unknown in advance. Therefore, tak- paraffinic molecules (mass spectroscopy analysis),
430-650-F: N, = wt % naphthenic molecules (mass spectro-

ing advantage of this situation we can use e( '," in eq. scopy analysis), 430-650'F. CAI = wt % carbon atoms am-
(20) instead of K(T7) to determine the constrained ong aromatic rings (n-d-M method). 430-650'F: A. = wt %
lumping matrices with different h. Let G(T) - eK' )'. aromatic substituent groups, 430-650F; P, = wt % paraf-
Then we have finic mou.ules (mass spectroscopy analysis). 650-1F; N,

= wt % naphthenic molecules (mass spectroscopy analysis),
650 F; CAh = Wt % carbon atoms among aromatic rings

MG (n-d-M method), 650+-F. A, = wt % aromatic substituent
groups, 650'F; G = G-lump (C,, 430'F); C = C-lump

MGG(T) (C,-C4 + coke); CAI + P, + N, + A, = LFO (430--650'F);
G CA, + P,, + N, + A,, = HFO (650 'F).

(28)

MG

M 0 G(T=)Nf• |cess (Weekman, 1979; Jacob et al., 1976). The scheme
of this model is shown in Fig. 1. The composition

MGG(IT)-- vector is

This approach will be illustrated by the Mobil "10- Y = (P,, Nh A,. CAI. P, N, A, CAI G C)r.

lump cracking model". The best constrained further
lumped systems with A = 3-6 valid in a given temper- The corresponding rate constant matrix K( f) is

ature region will be given, given in Fig. 2. The sum of P,,, Nh, A, and C,h is called
the heavy fuel oil (HFO) and the sum of P, N,, A, and
CAI is called the light fuel oil (LFO). The data of K( T)
for T = 900'F and the activation energies derived
from temperatures of 900, 950 and 1000°F are avail-

3. THE MOBILE "IO-LLMP CRACKING MODEL" able (Gross et al., 1976). Using these data and weight
The method proposed above will be illustrated by % units for the concentration of the species, we obtain

the Mobil "10-lump model" of catalytic cracking pro- the K(T) for T = 900, 950 and 1000°F as follows (in
units of 10' h -I):

-83.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001
0.00 - 122.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
000 0.00 - 166.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -20.49 0.00 0.00 0.00 0.00 0.00 0.00

20.70 0.00 0.00 0.00 -33.29 0.00 0.00 0.00 0.00 0.00
K(900)= 0.00 22.50 0.00 0.00 0.00 -74.33 0.00 0.00 0.00 0.00

0.00 0.00 19.00 0.00 0.00 0.00 -22.13 0.00 0.00 0.00
0.00 u.tm 50.00 5.86 0.00 G.00 0.00 -1.00 0.00 0.00

55.00 84.70 63.00 0.00 23.85 66.15 18.50 0.00 -4.40 000
7.85 14.87 34.20 14.63 9.44 8.18 3.63 1.00 4.40 0.00j
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-83.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-
0.00 - 122.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 -167.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -20.67 0,0) 0,00 0.00 0.00 0.00 0.00

20.80 0.00 0.00 0.00 -33.42 0.00 0.00 0.00 0.00 0.00

K(950)= 0.00 22.60 0.00 0.00 0.00 -74.58 0.00 0.00 0.00 0.00
0.00 0.00 - 19.09 0.00 0.00 0.00 -22.32 0.00 0.00 0.00
0.00 0.0e 50.23 5.89 0.00 0.00 0.00 -1.01 0.00 0.00

55.17 84.97 63.52 0.00 23.93 66.36 18.65 0.00 -4.45 0.00
7.89 14.94 34.54 14.78 9.49 8.22 3.67 1.01 4.45 0.00

-84.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-
0.00 - 122.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 -168.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -20.83 0.00 0.00 0.00 0.00 0.00 0.00

20.89 0.00 0.00 0.00 -33.53 0.00 0.00 0.00 0.00 0.00
K(1000)= 0.00 22.70 0.00 0.00 0.00 -74.81 0.00 0.00 0.00 0.00

0.00 0.00 19.17 0.00 0.00 0.00 -22.50 0.00 0.00 0.00
0.00 0.00 50.45 5.91 0.00 0.00 0.00 -1.02 0.00 0.00

55.34 85.22 64.02 0.00 24.00 66.55 18.80 0.00 -4.50 0.00
7.96 15.01 34.87 14.92 9.53 8.26 3.70 1.02 4.50 0.00

The G( T) = e '( ' were computed with T = 10 -

which was chosen because the significant dynamics
occurred within lO:

! 0.4337 0.0000 0.0000 0.0000 0.0000 0.0000 00000 0.0000 0.0000 0.0000-
0.0000 0.2950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .0000

0.0000 0.0000 0.1898 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.8147 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1166 0.0000 0.0000 0.0000 0.7168 0.0000 0.0000 0.0000 0.0000 0.0000

G(900)= 0.00O0 0.0851 0.0000 O.OOO O.WOU v.4/55 0.O00U U.0000 0.0000 0.000
000O 0.0000 0.0807 0.0000 0.0000 0.0000 0.8015 0.0000 0.0000 0.0000
0.0000 0.0000 0.2422 0.0527 0.0000 0.0000 O.O0 0.9900 0.0000 0.0000
0.3803 0.5157 0.3085 0.0000 0.1982 0.4554 0.1622 0.0000 0.9570 0.0000
0.0694 0.1042 0.1788 0.1326 0.0849 0.0691 0.0363 0.0100 0.0430 1.0000_

0.4323 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 u.00.U) u.t.U V.

0.0000 0.2937 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8133 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1169 0.0000 0.0000 0.0000 0.7159 0.0000 0.0000 0.0000 0.0000 0.0000

G(950)= 0.0000 0.0852 0.0000 0.0000 0.0000 0.4744 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0806 0.0000 0.0000 0.0000 0.8000 0.0000 0.0000 0.0000
0.0000 0.0000 0.2423 0.0529 0.0000 0.0000 0.0000 0.9900 0.0000 0.0000
0.3810 0.5164 0.3097 0.0000 0.1987 0.4562 0.1634 0.0000 0.9565 0.000
0.0698 0.1047 0.1799 0.1338 0.0854 0.0694 0.0367 0.0100 0.0435 1.0000

0.4311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000
0.0000 0.2925 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.1854 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.8120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1172 0.0000 0.0000 0.0000 0.7151 0.0000 0.0000 0.0000 0.0000 0.0000

G(1000)= 0.0000 0.0853 0.0000 0.0000 0.0000 0.4733 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0805 0.0000 0.0000 0.0000 0.7985 0.0000 0.0000 0.0000
0.0000 0.0000 0,2A7 nnu 1 00000 00000 0.9899 o -- C3 0.0000

L 0.3816 0.5171 0.3108 0.0000 0.1991 0.4569 0.1645 0.0000 0.9560 0.0000
0.0701 0.1051 0.1810 0.1350 0.0857 0.0698 0.0370 0.0101 0.0440 1.0000

CES 4:2-P
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The goal o v catalytic cracking process is the Here we choose s = n = 10. Then using eq. (16) the
production - ,isoline. The C-lump (H, HS, C, C, symmetric matrices Y and their eigenvector matrices
and coke) is the undesired by-product. These two R are determined. In order to force Mll; to be located
spc-.ies correspond to Y, and v, of y. Therefore. we on the first two columns of R and the lumped species
Keep them unlumped and lump the other species to to be composed of the other eight original species
simplify this system. Hence the given part of the (correspondingly the last two elements of each column
lumping matrix N1 is of Marezero), MG in the first row ofeqs 29land 30)

0 0 0 o 0 0 0 0 1 0 are multiplied by 100. Let i.K), YiG) and RIK),
-M = . R(G) represent the corresponding symmetric matrices

(0 0 0 0 0 0 0 0 0 I / ind their eigenvector matrices for using K(900) and

This information will be used in the following sec- G(900., respectively. The eigenvalues are also given
tions. right above the corresponding eigenvector matrix.

In the case of using K(900) the resultant Y( K) is the
following:

0.71 L80 -0.11 -0.14 0.07 0.78 0.09 -0.01 -00S 0.66
1.80 7.33 0.27 -0.16 0.14 1.78 0.14 --0.01 -0(a 0.io.

-0.11 0.27 8.67 0.46 0.21 -0 11 0.02 0.03 0.13 0.00

0.14 0.16 0.46 0.30 0.07 -0.19 -0.02 0.02 0.11 0.00
0.07' 0.14 0.21 0.07 0.05 0.08 0.02 0.01 1)02 0.00

Vl K j 0.78 f.78 -0.11 -0.19 0.08 0.87 0.11 -0.01 -0.07 0.00
009 0.14 0.02 -0.02 0.02 0.11 0.02 0.00 -0.01 0.00

-0.01 0.01 0.03 0.02 0.01 -0.01 0.00 000 001 0.00
-005 -0.06 0.13 0.11 0.02 -0.07 -0.01 0.01 10' 0.00

000 000 0.00 0.00 0.00 0.00 0(x) 000 0.00 104

The eigenvalues /'., of Y(K) arranged in nonin-
3,4. The lumpinq schemes in the isothermal reqtme creasing order and the eigenvector matrix RIK).

In order to find the difference between K( T) and whose eigenvectors are arranged according to the
e"r, in the determination of constrained lumping order of their eigenvalues, are given below:

A, = 10". 104, 8.7822, 8.2302, 0.6857, 0.2433. 0.0167. 0.0007, 0.0001. 0.0000

0 0 0.0695 -0.2395 0.5151 -0.2174 0.2937 -0.7059 0.1875 0.0739]
0 0 0 3421 - 0.8695 --03395 0.0887 -0.0504 0.0302 -0.0083 -0.0023
S0 0 0.9329 ().3537 0.0463 0.0485 0.0102 -0.0052 -0.0006 0.0001
0 0 OA.0411 10484 -0.3379 -0.8708 0.2554 0.0531 -0.1717 -0.1613
0 0 00292 -10105 0.0481 -0.3758 -0.6799 0.0522 0.5602 0.2768

R1 K I 1) 0 .0699 -).2424 0.6969 - 0.1852 0.0365 0.6173 -01684 -0.0750
0 0 00096 -0.0197 0.1210 -0.0699 -0.6176 -0.3377 -0.6279 -0.3004
0 0 0).0024 0.0025 -0.0203 -0.0616 0.0277 -0.0099 -04460 0.8922
I 0 00000 0.0000 0.[0000 00.0000 0.0000 0.0000 0.0000

0 I 01 (00 00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

schemes we first determine the constrained lumping
schemes at 900 F by using KI00) and G(900, re- According to the direct approach the first three
spectively. In this case eqs 120) and (28) become con o the e t pose the best con-columns on the left of R{ K) compose the best con-

1 strained approximate lumping matrix with h = 3, the
t tfirst four columns compose the best constrained ap-

"At;K1900) (29) proximate lumping matrix with i = 4 and so on.
Since the last three eigenvalues are equal to or almost

M,,K (900) equal to zero. the first seven columns of RI Y) com-
pose an almost exact lumping matrix. From eq. (6) we

and know that

f KI( T) = MIKI T )AP. 131?

Then we have the rate constant matrix for the lumped

"'VW,(,4O0)4 system with ti = 7 at 9W0 F as follows:
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-4.40X) 00000 97 1113 - 81.1857 51.9774 -23.8956 12.6995-
4.4(XX 0.0000 39.0312 -4.1559 2.2088 168466 26924 1
0.00 00(0) - 158.9405 - 17.2578 0.4065 1 8- o 0.6869

K 1900= 0.0000 0.0000 - 17.9688 -117.5942 - 13.7646 -0.8830 0.0376
0.0000 0.0000 7.2540 -28.9118 -80.1459 18 3513 - 12.7016L 0.W)O 0.0000 13.9865 3.488( 14.3366 26.7782 -0.8136
0.0000 .40()." 11.1369 -1.1708 -202488 38874 37.03 _

When we use the first i(h < 7) columns of RI K I to
compose the lumping matrix, the resultant lumped
rate constant matrix is the i x i submatrix in the top Similarly this matrix supplies all /OW90) with h < 6 b,
left-hand corner of tht above matrix. Therefore, this the i x i submatrices in the top left-hand corner of
matrix supplies all K (900) for h = -7. the above matrix. The comparison of v,, between the

For the initial composition I' - v, = , others are exact solution and the solutions gven by the lumped
zero) we obtained the evolutions of the concentration models %kith i = 3 6 is shown in Fig. 4. When i 6
of Y, by solving eqs (5) and (6) (for h = 4-7). The the coincidence between the exact and the lumped
results are shown in Fig. 3. One can see that, when h models is very good.

becomes larger, the solution of the lumped system is From the results obtained by using K1900) and
closer to that of the original one. For h = 7 the G(900) one can find that G( T) gives the better results.
lumping is almost exact. The reason is not entirely clear. Possibly the lumping

Following th& same procedure we use G(900) in- schemes given by K) T) are valid in the whole n-
stead of K(900) to determine the constrained lumping dimensional space, while the lumping schemes ob-
matrices for different h. The resultant Y(G) is the tained from G( TI are suitable for the whole composi-
following:

1.30 1.44 0,77 0.02 0.98 1.46 1)97 000 I ,4 0.05
1.44 1.61 0.86 0.03 1.08 1.62 1.05 0.00 1.97 0.09
0.77 0-86 0.64 0.49 0.68 0.82 0,54 0.06 093 1.16
0.02 0.03 0.49 1.40 0.31 -0.11 -0.06 0.16 -0.31 2.96
0.98 1.08 0.68 0.31 0.82 1.07 0.74 0.04 1.20 0.72

,i'G)= 1.46 1.62 0.82 -0.i1 1.07 1.64 1.08 -0.01 2.00 -0.21
0.97 1.05 0.54 -0.06 0.74 1.08 0.7's -0.01 1.25 -0.08
0.00 0.00 0.06 0.16 0.04 -0.01 -0.01 0.02 -0.03 0.331
1.74 1.97 0.93 -0.31 1.20 2.00 1.25 -0.03 104 -0.75
0.05 0.09 1.16 2.96 0.72 -0.21 -0.08 0.33 -0.75 10'.j

The eigenvalues , of Y(G) arranged in nonin-
creasing order and the eigenvector matrix R(G) arran-
ged according to the oice of their eigenvalues are
given below:

10", 104, 6.4681, 1.6352, 0.0642, 0.0142, 0.0005, 0.0002. 0.0000, 0.0000

0 0 0.4475 -0.0623 --0.0095 -0.2227 0.0646 0,0160 0.0217 -086107
0 0 0.4953 -0.0625 -0.4301 -0.0774 -0.3854 -04522 -0.3865 0.2396
0 0 0.2769 0.2811 -0.2664 0.8340 -0.0097 0.2385 0.1183 -0.0825
0 0 0.0381 0.9203 0.0128 -0.3109 -0.0871 -0.1119 0.1840 0.0295
0 0 0.3455 0.1508 0.4648 0.1052 0.5944 -0.1031 -04889 0.1667

R)GI= 0 0 0.4976 -0. i526 -0.2024 -0.3090 0.2945 0.3770 0.4580 0.3925
0 0 0.3307 -0.0929I 0.6976 0.1121 -0.5522 -0.0005 0.2576 0.1069
0 0 0.0042 0.1080 -0.0063 -0.1820 -0.3075 0.7571 -05358 0.0190
I 0 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0(00 0.0000
0 I 0.0000 0.0000 00000 0.0000 0.0000 0X)) ofXXX) 0.0000

Observing the eigenvalues of R(G) we found that
the last four eigenvalues are equal to or almost equal tion region (i.e. all v, being nonnegative and - v.
to zero. Therefore, the first six columns of RIG) = 1). Considering the results we will determine the
compose an almost exact lumping matrix. Using eq. lumping schemes validated in the temperature region
131) the resultant rate constant matrix for the lumped 900- 1000 F by using ( T I.
system with A = 6 at 900 F is the following:

-4.4000 0.0000 131.2834 0,7743 --41.1329 17.8802-

4.4000 0.0000 29.4419 21.6056 -10.1357 19.7656
0.0000 0.0000 -73.7046 -2.2557 29.0315 - 12.7847

K 900= 0.0000 0.0000 -22309 -32.3531 6.1642 -36.2268 V
00000 0.0000 412758 8,9664 - 56.9739 33.7715 i[0.0000 0.0000 -20.1729 -41,2757 29.5716 - 135.6620_1
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3B. The lumping scheme Jbr the nonisothermal regime Similarly these matrices supply all the K(900), K(950)
Since G( T) for different temperatures (900- and K(1000) with h < 6 by the h x h submatrices in

1000°F) are very close to one another, it is enough the top left-hand corner of the above matrices. The
only to choose three matrices G(900), G(950) and comparisons of y, and yo between the exact solutions
G(1000) to determine the lumping schemes for this and the solutions given by the lumped models with
temperature region. A = 3-6 and T = 900, 950 and 1000°F are shown in

Utilizing eqs (16) and (28) and.flR6wing the same Figs 5-10. The initial compositions chosen by Coxson
procedure as that in Section 3A. we obtain the sym- and Bit hoff(1987) are adopted here: (a) paraffinic =
metric matrix Y(G), its eigenvalues and eigenvector (0.3, 0.1, 0.15, 0.15, 0.2. 0.05, 0.03, 0.02, 0, 0); (b)
matrix R(G):

3.9' 4.32 2.31 0.05 2.95 4.37 2.91 0.01 5.23 0.16-
4.2 81 2.60 0.08 3.24 4.84 3.16 0.01 5.89 0.27

.31 2.60 1.93 1.47 2.05 2.46 t.63 0.17 2.80 3.49
0.05 0.08 1.47 4.23 0.94 -0.32 -0.19 0.50 -0.94 8.93

2.95 3.24 2.05 0.94 2.47 3.21 2.22 0.11 3.60 2.15
Y(G) 4.37 4.84 2.46 -0.32 3.21 4.93 3.25 -0.04 5.99 -0.65

2.91 3.16 1.63 -0.18 2.22 3.25 2.28 -0.02 3.76 -0.25
0.01 0.01 0.17 0.50 0.11 -0.04 -0.02 0.06 -0.10 1.00
5.23 5.89 2.80 -0.94 3.60 599 3.76 -0.10 3 x 10 -2.25
016 0.27 .49 8.93 2.15 -0.65 -0.25 1.00 -2.25 3 x 10J

,= 3 x 10'. 3 x 104. 19.4200. 4.9500, 0.1932, 0.0428. 0.0014. 0.0005, 0.0000. 0.0000

0 0 0.4472 -0.0622 -0.0102 -0.2227 0.0633 0.0149 0.0110 -0.8614
0 0 0.4948 -0.0622 -0.4302 -00779 -0.3829 -0.4527 -0.3850 0.2458
0 0 0.2771 0.2807 -0.2669 0.8340 -0.0107 0.2381 0.1172 -0.0841
0 0 0.0383 0.9206 0.0138 -0.3101 -0.0862 -0.1130 0.1839 0.0275
0 0 0.3456 0.1500 0.4645 0.1046 0.5952 -0.0974 -0.4879 0.1719

R(G)= 0 0 0.4973 -0.1522 -0.2033 -0.3093 0.2937 0.3769 0.4643 0.3857
0 0 0.3319 -0.0934 0.697., 0.1125 -0.5514 -0.0040 0.2594 0.1044
0 0 0.0042 0.1077 -0.0064 -0.1826 -0.3121 0.7575 -0.5321 0.0251
1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Comparing the resultant R(G) with that for isother-
mal condition in Section 3A, one can see that the
eigenvector matrices R(G) are almost the same. Since aromatic = (0.1,0.1,0.2,0.4,0.05,0.05,0.05,0.05,0,0);
we use three G(T), the eigenvalues should be nearly 3 and (c) naphthenic = (0.15, 0.4, 0.1, 0.08, 0.07, 0.2, 0, 0,
times of the eigenvalues for the isothermal condition. 0, 0). They represent the basic charge compositions.
This is found to be true. Therefore, the first six To save space we do not give all the results for
columns of R(G) will supply an almost exact lumping different initial compositions and temperatures. They
matrix for 900- 1000'F. Using eq. (31) the lumped rate slightly differ in accuracy for A = 3 or 4, but they have
constant matrices for 900, 950 and 1000°F are as
follows:

- 4.4000 0.0000 131.2420 0.7763 -43.2836 17.8111]
4.4000 0.0000 29.4447 21.5948 -10.1565 19.7626
0.0" 0.0000 -73.6407 -2.2723 29.0700 - 12.7736

/(900)= 0.0000 0.0000 -2.2644 -32.3174 6.1810 -36.1860

0.0000 0.0000 41.3131 8.9754 -57.0402 33.7829

0.0000 0.0000 -20.1893 -41.2263 29.5970 - 135.6848J

-4.4500 0.0000 131.7775 0.8610 -43.4412 18.1462-
4.4500 0.0000 29.6477 21.8202 - 10.2328 19.9808
0.0000 0.0000 -73.9510 -2.3267 29.1827 - 12.9555

K (950) 0.0000 0.0000 -2.3185 -32.5687 6.2528 -36.4184
0.000 0.0000 41.4835 9.0604 - 57.3446 34.0363
0.0000 0.0000 -20.4050 -41.4819 29.8297 - 136.59381

- 4.5000 0.0000 132.2843 0.9428 -43.5854 18.4713
4.5000 0.0000 29.8362 22.0337 -10.3181 20.1938
0.0000 0.0000 -74.2425 -2.3792 29.2919 -13.1329

K(1000) j 00000 0.0000 -2.3706 - 32.7989 6.3230 -36.6427

0.0000 00000 41.6453 9.1425 - 57.6298 34.2775]

0.0000 0.0000 -20.6144 -41.7281 30.0547 - 137.4624_
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Fig. 3. Comparison of Y, (gasoline) for the original model and the isothermal lumped models obtained by
using K(900).
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zm o solution of 4-dimensional lumped model

o 02 - 0 solution of 5-dimensional lumped model

+ solution of 6-dimensional lumped model
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t(10-
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Fig. 4. Comparison of y9 (gasoline) for the original model and the lumped models obtained by using
G(900).

a similar accuracy for A = 5 or 6. When A = 6 the the first-order reaction system under nonisothermal
solutions for the lumped model in all these conditions conditi-
are almost exactly the same as those of the original
model. When At = 5 the coincidence between the exact 4. CONCLUSION AND DISCUSSION
and the lumped models is very good. Considering that In the present paper, we have shown that the direct
there exists experimental error in practice the lumped approach to determining the constrained approxim-
model with A = 5 is adequate and the lumped model ate lumping schemes for an arbitrary reaction system
with h = 4 is acceptable. Even if Al = 3, for most can be employed to the determination of the lumping

conditions the lumped model approximates the ori- schemes for a first-order reaction system under the
ginal system quite well. All these results show that the isothermal and nonisothermal conditions.
direct approach can be employed to determine the In the nonisothermal case the rate constant matrix
best constrained approximate lumping schemes for K( T) is a function of temperature T and the constant
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temperature 9000 F
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Fig. 5. Comparison of y9 (gasoline) at T = 900F for the original model and the lumped models obtained
by using G(900), G(950) and G(1000).

solid line. original model(10 species)
4 solution of 3-dimensional lumped model

0.4 - solution of 4-dimensional lumped model 0 o
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0.1 /  + solution of 6-dimensional lumped model
/ initial condition: (0.3,0. l,0.15,0.15,02,0 05,0 03.0 02.0.0

temperature: 900' F
/

0 .0 4 ,l I I I I I I I

0.0 1 0 2.0 3.0 4.0 5.0 60 7.0 80 9.0 10C

t(10-
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Fig. 6. Comparison of y 1o(C-lump) at T = 900F for the original model'and the lumped models obtained
by using G(900), G(950) and G(1000).

basis matrices of K( T) are not easy to determine. In suit of the present paper shows that the lumping
this case one can use a set of K( T,) for different given schemes obtained by using eK(T ' are even better than
temperatures, which properly cover the desired tem- those by using K(T). Since eXIT)? can be determined
perature region, instead of the basis matrices of K( T). experimentally, using e'M? is more advantageous.

If the subspace _4' spanned by the row vectors of The Mobil "10-lump cracking model" was used to
the lumping matrix is invariant to the transpose of the illustrate this approach. The results show that this
Jacobian matrix JT(y) of the kinetic equations, ._' is model can be adequately reduced to lumped ones with
also invariant to any analytic function of Jr(y). For five or six additionally lumped species. The accuracy
the first-order reaction system Jr(y) is KT( T) and of the lumping schemes validated for the temperature
[ex1(T)]T is an analytic function of KT ( T). Therefore, range T = 900-1000°F is almost the same as that for
one can use eDIT)? instead of K( T) to determine the T = 900'F. This is because that the rate constants do
constrained approximate lumping matrices. The re- not change much in this temperature range. For a
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Fig. 7. Comparison of y9 (gasoline) at T = 950'F for the original mode! and the lumped models obtained

by using G(900), G(950) and G(1000).
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Fig. 8. Comparison of y, 0(C-lump) at T = 950OF for the original model and the lumped models obtained
by using G(900), G(950) and G(1000).

wider range of temperature, the difference between the Let
lumping schemes validated in the large temperature z = (yrT)T
range and that for a given temperature in the same (33)

range will become larger. h(y, T) = [fT(y, T) g(y, T)]T (
The approach presented in this paper is not only

applicable to first-order reaction systems but also to Then eq. (32) can be rewritten as
other ones under nonisothermal conditions. Let us dz/dt = h(z). (34)
consider the general case of a nonisothermal reaction
system. It can be described as The exact lumping of eq. (34) can be considered in the

same way as that of eq. (1), except that the last
dy/dt = f(y, T) (32) "species" T is required unlumped (this means that the

dT/dt = g(y, T). lumping matrix M must have a given row e..,).
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Fig. 9. Comparison of Y,(gasoline) at T = 1000°F for the original model and the lumped models obtained
by using G(900), G(950) and G(1000).

solid line original model(l0 species)
a solution of 3-dimensional lumped model

0.4 o solution of 4-dimensional lumped model
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n: 2
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, 0 solution of 5-dimensional lumped model

Q1 + solution of 6-dimensional lumped model
initial condition: (0.15,0 4,0.1,0.08.0 07,0.2,0,0.0.0)
temperature: 10000 F
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t(10-
5 h - 1)

Fig. 10. Comparison of YIo (C-lump) at T= 1000°F for the original model and the lumped models
obtained by using G(900), G(950) and G(1000).

Considering that the rate constants are exponential variant subspaces of J r(z) are just the common fixed
functions of temperature, the constant basis matrices invariant subspaces to all these constant matrices.
of the transpose of the Jacobian matrix Jr(z) of h(z) However, the A,( T)s are like K( T) and their constant
cannot generally be determined. However, for most basis matrices are not easy to determine. Therefore,
reaction systems it may be decomposed as the approach to determine the fixed invariant sub-

spaces of K ( T) presented in this paper can be em-
JT(z) = a,(y)A,( T). (35) ployed to Ak( T). We only need to properly choose a

k=1 sufficient number of temperaure T in the desired
We need to find a fixed invariant subspace containing region and then to calculate the corresponding AJ T).

at least the unit vector e,,, simultaneously for all Using equations similar to eqs (15) and (16) one can

A,( T) in the desired region of T. If the constant basis determine the constrained lumping matrices with dif-
matrices for every A,( T) are known, the fixed in- ferent dimensions for any nonisothermal reaction sys-
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tern. In order to obtain a good result the number of K( T) rate constant matrix of the lumped sys-
constant matrices for different temperatures may be tern at temperature T
quite large, but the computational effort is no. very M lumping matrix
expensive, because the computation only contains MD determined submatrix of M
matrix multiplication and determination of the eigen- M, given submatrix of M
values and eigenvectors for a symmetric matrix. In M generalized inverse of M satisfying MM
conclusion, this approachbjs-n easy way to determine = l4
constrained lumping schemes for any reaction system Q(G)' matrix representation of Im [ M,(A )L]T
under nonisothermal conditions. with orthonormal columns
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Abstract

A general lumping analysis of a reaction system coupled with diffusion is pre-

sented. This analysis cav-b applied to any reaction system with n species for both

steady-state and transient conditions. Here we consider lumping by means of an

x n constant matrix M with rank fi(fi <_ n). When the diffusivity is independent

of position and concentration vectors r and y, it is found that under steady-state

conditions a reaction system having species concentration vector y(r) coupled with

diffusion is exactly lumpable if and only if there exist nontrivial fixed JT(y(r))D-'-

invariant subspaces M (here JT(y(r)) is the transpose of the Jacobian matrix for

the chemical reaction rate vector f(y(r)) and D is the inverse of the constant effec-

tive diffusivity matrix), no matter what value y(r) takes; under transient conditions

there exist simultaneously D- and JT y(r,t))-invariant subspaces M. When D is

a function of position or concentrations, M is simultaneously invariant to jT(y)

and D(r), D(y(r)) or D(y(r,t)). The same approach to determine the constrained

approximate lumping schemes for a non-diffusion system can be used in a reaction-

diffusion one except that the constant basis matrices Ak's of jT(y) are replaced by

Bk = AkD- ' under steady-state conditions or the extra matrix D is added under

transient conditions. For nonconstant D the basis constant matrices Di's of D(r),

D(y(r)) or D(y(r,t)) are added.



I. INTRODUCTION

The general analyses of exact and approximate lumping in chemica. Idnetics

have been presented in our previous papers(Li and Rabitz, 1989, 1990a, 1990b). In

those papers we only considered homogeneous reaction systems without diffusion.

In realistic problems many reactoin systems are coupled with diffusion, which may

modify greatly the behavior of the systems. Therefore, a general lumping analy-

sis for reaction systems coupled with diffusion is necessary. When we consider a

reaction system coupled with diffusion, we need to study both steady-state and

transient problems. Wei and Kuo(1969) gave an exact lumping analysis of a uni-

molecular reaction system coupled with diffusion under steady-state conditions. In

the present paper a general lumping analysis of an arbitrary reaction system cou-

pled with diffusion under both steady-state and transient conditions is presented.

It will be shown that similar results to those of the non-diffusion reaction systems

can be obtained. Section II discusses exact lumping for a steady-state condition.

Section III considers exact lumping for the transient condition. Section IV presents

the conditions for exact lumping when the diffusivity is a function of position or the

concentrations of the reactants. In section V, a discussion of tpproximate lump-

ing is presented. Finally, Section VI presents the conclusion and discussion of the

paper.

II. EXACT LUMPING FOR A REACTION SYSTEM COUPLED WITH DIF-

FUSION UNDER STEADY-STATE CONDITIONS

Consider an arbitrary complex reaction system with n-species occurring within

a porous catalyst particle(Wei, 1962). Other diffusion problems can be treated in

the same way. Let V be the interior of the catalyst particle, and 81" be the boundary

of V across which mass transfer may occur. At a point represented by the vector

• 1



r within the catalyst particle, the local reaction rate vector is determined, in terms

of the n-dimensional local concentration vector y(r), by f(y(r)) which does not

contain r explicitly. The diffusion rate vector of supply of the species to the point

r is given by DV 2y(r), where D is the n-dimensional diagonal effective diffusivity

matrix with positive number d, as its ith diagonal element. Here we consider d, to

be independent of concentrations and position. We will discuss the cases when di

is a function of position or the concentrations of the reactants in Section IV. In a

steady-state, at point r the reaction rate vector must equal the negative rate vector

of supply by diffusion

-DV 2 y(r) = f(y(r)). r E V. (1)

We now give the definition of exact lumping validated in the n- limensional

space of y(r) for a reaction system coupled with diffusion under steady-state con-

ditions. The reaction-diffusion system in Equation 1 is exactly lumpable by an

ft x n(hi < n) constant matrix M with rank ft if for

(r) = My(r), (2)

we can find an hix fi nonsingular constant matrix 1 and an fi-function vector f(k (r))

such that the behavior of (r) can be described by

_bV2r(r) = (3)

According to the physical meaning of an effective diffusivity matrix, D is a nonsingu-

lar constant diagonal matrix with positive diagonal elements. However, sometimes

these conditions cannot be satisfied. Our main task is reducing the dimension.

Therefore, it is not necessary to satisfy all these restrictions. Here we only con-

strain . to be nonsingular. If b is not diagonal with positive diagonal elements,

Equation 3 is satisfactory mathematically if not physically.
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A. Necessary and Sufficient Conditions for Exact Lumping under Steady-state

Conditions

Not every system is exactly lumpable. Therefore, we need to determine the I
necessary and sufficient conditions for the existence of exact lumping. We also desire

that these conditions be constructive in order to determine the lumping matrices.

First rewrite Equations 1 and 3 as

Vy(r) = -D- f(y(r)), (4)

V 2 (r) = -D - f(k(r)), (5) 3
and considering Equation 2 we have

MV 2 y(r) = -'f($r(r)). (6) I
Multiplying both sides of Equation 4 by M from the left gives

MV12 y(r) = -MD-'f(y(r)), (7)

and upon comparing Equations 6 and 7 we have

MD 'f(y(r)) = - f(:(r)), (8)

AID- 1 f(y(r)) = 1 f(My(r)). (9) 1
As the rank of M is fi, there must exist generalized inverses(Ben-Israel and

Greville, 1974) &1 of matrix M satisfying U
MM- =4, (10)

where I is the i-identity matrix. We consider the lumping problem generally, i.e.,

the lumping scheme is validated in the whole n-dimensional space of y(r). Then 5
3

I



Equation 9 is an identity for any y(r). Therefore letting y(r) take the value M k(r)

and substituting it into Equation 9, we have

MD-'f(.k(r)) = - f(MM r(r)), (11)

MD-' f(.My(r)) - (12)

Comparing Equations 8 and 12, we obtain the necessary condition for the existence

of exact lumping

MD-'f(y(r)) = MD-'f(.MMy(r)). (13)

Equation 13 is also sufficient for the existence of exact lumping. Indeed, if we

multiply both sides of Equation 4 from the left by M and utilizing Equation 13, we

obtain

Mv 2'y(r) = V 2 My(r)

= -MD- 1 f(y(r))

= -MD -'f(1My(r)). (14)

Let

k(r) = My(r), (15)

()= MD-'f(M(r)). (16)

Then Equation 14 becomes

V2 y(r) = -b' )(17)

Multiplying both sides of the above equation from h- leff bY--h) v-i6lds Eqtmtion 3.

This shows that the system of Equation 1 is exactly lumpable by Al. Considering

Equation 16, the lumped system can then be described as follows:

-DV 2 k(r) = 5MD'f(R3(r)). (18)

4
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Notice that 5 can be chosen arbitrarily, except that it is nonsingular. Considering

the physical meaning of effective diffusivity matrix, we would like b to be a nonsin-

gular constant diagonal matrix with positive diagonal elements. The simplest case

is that =/j,. In this case Equation 18 becomes

_V2 (r) = MD-' f(Rkc'(r)). (19)

Equation 13 does not place any restriction on M except that MM = A. The I
latter point is important in that the non-unique nature of ft does not effect the

form of the lumped equations in the exact case. This means that M in Equation

18 is anyone of the generalized inverses satisfying MM = If. This can be easily 3
demonstrated as follows.

Considering once again that Equation 13 is an identity for all y(r), let y(r)

take the following value y

M'"My(r),

where Ni' is another generalized inverse of Al'. We obtain

MD- f(R'My(r)) = MD-'f(MIM'1_"My(r)), 3
= MD-'f(.fMy(r)), (20)

or

MD-1 f(-f': (r)) = MiD-f(-M~(r)). (21) 3
This shows that different generalized inverses of M give the same lumped model.

We cannot directly apply Equation 13 to examine whether a system is exactly

lumpable or not, because we do not know M in advance. In order to obtain further

insight into exact lumping, we differentiate both sides of Equation 13 With respect

to y(r) to produce

MD-'J(y(r)) = MD-'J(AIy(r))A-IM. (22) 3
5
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Equation 22 is not only the necessary condition for exact lumping, but the sufficient

one as well. Integrating Equation 22 under an appropriate integration condition

with respect to y(r) will yield Equation 13, which is the necessary and sufficient

condition for the existence of exact lumping. Since the rank of M is h, it has a

nontrivial null space A( with dimension n - fi. We can verify that A( is invariant

under D-'J(y(r)), no matter what value y(r) takes. Indeed, for every x E K! we

have

MD - 1 J(y(r))x = MD - 1 J( t My(r)) I Mx = 0. (23)

This implies that D-1 J(y(r))x E A for any value of y(r), so V is D-'J(y(r))-

invariant.

Suppose )V is represented as

3( = Span{x 1 ,x 2 ,...,x, }, (24)

where xj's are the basis of A. Let vectors xj compose the columns of matrix X,

then

MX =0, (25)

and

MD-'J(y(r))X = 0. (26)

Notice that if A is D 1 J(y(r))-invariant, then A'± is jT(y(r))(D-1)-invariant.

Since D-' is diagonal, V' is also jT(y(r))D--invariant(Gohberg et al., 1986).

Let ."A = KV'. Considering Equation 25, it is obvious that M is spanned by the

row vectors of M.

M = Spa-{m(),m(2),..., m(,)}, (27)

where Ij) is the transpose of row i of M. We call A' and M- fixed invariant

subspaces of J(y(r)) and JT(y(r)), respectively.
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In conclusion, a system described as Equation 1 can be exactly lumped 1, an

fi x n real constant matrix M, only if the subspace M spanned by the row vectors

of M is jT(y(r))D-l-invaiant. We can demonstrate that this condition is also 3
sufficient and the lumped model can be represented as

V 2k(r) = -MD -1 f(R S(r)). (28)

The proofs are given in Appendix.

Similarly, as the non-diffusion system we also have the following equation for

an exactly lumpable reaction-diffusion system(Li and Rabitz, 1989): I
M(D-'J(y(r)) - D - 1 J(Mq My(r))) = 0. (29)

This equation implies that JT(y(r))D-1 and JT(KJMy(r))D- l have the same

eigenvalues corresponding to M. I
As a special case, when a system is linear, i.e., unimolecular, J(y(r)) is a con-

stant matrix and so is JT(y(r))D-l. In this situation, the fixed invariant subspaees

become the invariant subspaces of a constant matrix and do exist. Therefore, a lin-

ear system is always exactly lumpable.

Similarly, as the non-diffusion system, when a fixed jT(y(r))D-l-invariant sub-

space corresponds to constant eigenvalues, the lumped system is linear, nc matter

if the original system is linear or not(Li and Rabitz, 1989). 5
In summary, for exact lumping in the whole n-dimensional composition space

for a reaction-diffusion system under steady-state conditions we need to determine

whether the fixed nontrivial invariant subspaces M of JT(y(r))D-' exist or not.

If they do exist, the system described as Equation 1 is exactly lumpable by matrix

M, whose rows are composed of the basis vectors of M. The lumped system can

be described by Equation 18.

7
t
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B. Determination of the Fixed JT(y(r))D- -invariant Subspaces M

In order to determine lumping matrices M we need first to determine the

fixed JT(y(r))D- -invariant subspaces M. As we have proved in our previous

paper(Li and Rabitz, 1989), JT(y(r)) can be represented as a linear combination

of m m < n2 ) constant matrices

j T (y(r)) % ak(y(r))Ak, (30)
k=i

where ak(y(r)) are parameters which ae functions of y(r); the Ak's are constant

matrices considered as a basis of JT(y(r)). Then we have

jT(y(r))D-i = Z a(y(r))AkD-'

- ak(y(r))Bk, (31)

where

Bk =AkD - 1 . (32)

It has been demonstrated that the simultaneously invariant suLspaces of all the

constant matrices 4 k are jT(y(r))-invariant(Li and Rabitz, 1989). Similarly, the si-

multaneously invanant subspaces of all the constant matrices Bk are JT(y(r))D - l -

invariant.

When a reaction system is uni- and/or bimolecular, the elements of jT(y(r))

are only linear functions of the yk(r)'s. In this case, Equation 30 will have a simple

form, i.e., ak(y(r)) is either constant or yt(r):

JT(y(r)) = Ao + Zyk(r)Ak, (33)

k=1

8



where m is equal to or less than n, and A0 can be the null matrix. In this case

the fixed JT(y(r))-invariant subspaces are simultaneously Ao- and all Ah-invariant.

Similarly, we also have

JT(y(r))D- 1 = B0 + yyk(r)Bk, (34)

k----i

and the fixed JT(y(r))D- -invariant subspaces are simultaneously B0 - and all Bk-

invariant. Therefore, we can determine the fixed invariant subspaces of JT(y(r))D-1

by determining the simultaneously invariant ones of all Bk(k = 0,1,...,m). The

procedure to determine the simultaneously invariant subspaces of all Bk through

Inv(Z, =0 Bk) or Inv(f'=0 Bk) has been given in a previous paper(Li and Rabitz, I
1989).

Let us consider a special case that there exist simultaneously all Ak and D

invariant subspaces M. We can prove that M are simultaneously all Bk-invariant.

Indeed, for any x E M, we have

Bkx = AkD- 1 x = AkX' = x" E M, (35)

where x' E M because M is D-'-invariant. I
We can prove that any D--invariant subspace is also D-invariant. Since D

is nonsingular, any invariant subspace M of it is a nonsingular invariant one, i.e.,

the image of M upon mapping by D - 1 has the same dimension as that of M. In this 3
case, its corresponding matrix representation MT satisfies the following equation

D-1MT = AfTQ- 1 , (36) I
where Q is an h x ii nonsingular matrix. Multiplying both sides of Equation 36

from the left and right by D and Q, respectively, yields

DD-1 M T Q = DMTQ - 1Q, (37)

9



MTQ = DMT. (38)

This implies that M is D-invariant. Transposing Equation 38 gives

QTM = MDT = MD. (39)

Under this condition the exact lumping problem of a reaction system coupled with

diffusion becomes simple. Suppose M is simultaneously all Ah and D-invariant, i.e.,

simultaneously jT(y(r))- and D-invariant. In this case, from the result obtained in

our previous paper of exact lumping for the non-diffusion system, we have

Mf(MMy(r)) = Mf(y(r)). (40)

Multiplying both sides of Equation 1 from the left by M gives

-MDV 2 y(r) = Mf(y(r)),

_QTMV 2 y(r) = Mf(MIMy(r)). (41)

Let

(r) = My(r).

Then we have

-Q T V2 (r) = Mf(Mt,(r)). (42)

We can see that the system is exactly lumpable by M, and QT is just like D.

Considering Equation 39 we have

QT = AIDM, (43)

which may not be diagonal. Since Q is nonsingular, if we require b to be a nonsin-

gular diagonal matrix, we can multiply both sides of Equation 42 from the left by

(QT)-1 to produce

10



_V 2 k(r) = (Q T )-IMf(-ft(r))

= (Q-I) T Mf(Rk(r))

= MD-f(Rt(r)). (44)

Here we have used the relation of Equation 36. Then we can multiply both sides of

Equation 44 from the left by an arbitrary nonsingular diagonal matrix D to obtain

the standard form

-bV 2k(r) = bMD-f(Mr(r)). (45)

When b = dl,,, where d is a positive number, the lumping problem is even I
simpler. Since any subspace is drn-invariant, therefore the necessary and sufficient

condition is reduced to the the condition of the non-diffusion system:

MJ(y(r)) = MJ(.IMy(r))MM. (46) 1
In this case, Equation 18 becomes

-DV 2 S~r) ~jD~(Kf~r)).(47)3

C. Sample Problem

As an example of the application of the analysis above, we choose the simplest 3
case of a unimolecular reaction system. For a unimolecular reaction system, the

corresponding differential equations are

-DV 2 y(r) = Ky(r), (48) 3
where K is the rate constant matrix. The Jacobian matrix for f(y(r)) is just K,

and then

jT(y(r')) = K T . (49) U
11

I



As a specific illustration consider a unimolecular reaction system with 3 species(Wei

and Kuo, 1969) coupled with diffusion:

3
c ,---"C 2.

2

4 0\\ S s // 10

C3

where C1 ,C2 and C3 represent the three species; all numbers are unitless rate

constants. Let y, represent the concentration of species C,. Then

J T (y(r)) = K T  3 -12 6 . (50)

20 10 -10

The effective diffusivity matrix is given as

D =( 2 . (51)

From Section IIA we know that any linear system coupled with diffusion under

steady-state conditions is exactly lumpable. Then the only thing we need to do is

to determine all of the KTD-1-invariant subspaces, whose basis vectors compose

the lumping matrices.

=(-13 3 10 /0-

KTD- = 2 -12 10 0.5
4 6 -10 1

-6.5 1.5 10

1 -6 10 .(52)
2 3 -10

The eigenvector matrix X and the eigenvalue matrix A of KTD -I are

X = -/3 1 1 ,(53)

A = -15 ). (54)

12
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Considering that the eigenvalues of KTD - I are distinct, any subspace spanned by

a subset of its eigenvectors is invariant to it. For convenience let x1 ,x2 and x3

represent the 3 columns of X. Then the set of all KTD-1-invariant subspaces

Inv(KTD - 2) contains

Span{O}, Span {x1 , Span{x2 }, Span{x3 },
Span{x1 ,X2}, Span0X1 ,x3},Span{x 2,x3},

In Inv(KTD - ) the nontrivial invariant subspaces, i.e., those with dimension 1 and

2, can be used to construct the exact lumping matrices. Choosing some bases for

the nontrivial invariant subspaces M the corresponding lumping matrices are as

follows: I

The lumping matrices for 1-dimensional M:

MI =(1 -2/3 0), 5
M2=(1 1 -1 ),

M3=(1 1 1/2).

The lumping matrices for 2-dimensional M:

M4 = (1 -2/3 0

M 5 =_ 1 -2/3 0

C 1 1/2

C 3 1/2)'

The number of K D--invariaat subspaces is finite, but the number of the

lumoing matrices is infinite, because one can choose different bases to represent

2-dimensional invariant subspaces. For example, Span{x 2 ,x 3} gives the lumping

1
13
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matrix Ms. We can use elementary row operations (Lang, 1986) on the two rows to

produce another equivalent exaci lumping mnatrix:

The rows of the new lumping matrix are just another basis of the same invariant

subspace.

In Section IIB we proved that the simultaneously D- and JT(y(r)y)invariant

subspaces are contained in jT(y(r))D-1 invariant ones. Here this means that the si-

multaneously D- and KT-invariant subspaces axe contained in the KTD-'-invariant

ones. To show this we determine the simultaneously D- and KT-invariant subspaces,

which are contained in the invariant ones of matrix A =D + KT.

A=12 -io 10 ).(55)
4 6 -9/

The eigenvector matrix X and the eigenvalue matrix A of A are

x~ I (+~/~~) 2  -2/3 ,(56)

-0+ /01/2 -I+V/401)/20 0

A _ (17 + V/401)20 (-17 + V/40)/20 -3).(57)

Since all eigenvalues of A are distinct, similarly all the subspaces spanned by the

subset of the eigenvectors are A-invariant. After examining which of A-invariant

subspaces are simultaneously D- and KT -invariant, we obtain the simultaneously

D- and KT-invariant subspaces, whose matrix representations are as follows:

The matrix representation for 1-dimensional M:

MS6 1( -2 /3 0

14
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The matrix representation for 2-dimensional M:

C I (-I +V41)/20)

One can see that Ms = Mi and M,, just like Mt7 , is only another matrix represen-

tation of the corresponding subspace for M6 . This result shows that the simulta-

neously D- and KT-invariant subspaces are really contained in KTD-'-invariant

ones. I
In Section HA we proved that the non-unique nature of Kf does not effect the

form of the lumped equations. To illustrate this point consider for M 1 , for example,

where we can find an infinite number of R, satisfying M, R = 1. We arbitrarily 3
choose three:

R I = (1 0 0) T ,  MI =(I 0 1) T  M (5/3 1 o) T .

It is easy to show that the differential equations for the lumped system are inde-

pendent on the choice of M1 . According to Equation 18 and letting D = Iii we

have

-V 2 '(r) = MD-1 f(MI(r)), (58)

and since

f(y(r)) = Ky(r), (59)

then we have

-V'k(r) = MD - KMR (r). 
(60)

It is easy to verify that for different M1 we have the same lumped equation:

/1/2 \ -13 2 4
-V 2 (r) = (1 -2/3 0) 1/2 ) 3 -1 6 M-!1Y(r)

1 10 10 -10

=(-15/2 5 0)fti (r)
15 - -M r

= -- 5(r). (61) 1
2

15
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Similarly we can obtain the lumped equations for other lumping matrices M2 to

M 7 as follows:

V2 (r) = 15§(r)). (62)

V2 (r) = 0. (63)

V 2 (r) 15/2 15) (64)

V2 (r) = (15/2 o) ,(r). (65)

V = (15 0) ,(r). (66)

V 2,(r)= (5 10>(r). (67)

III. EXACT LUMPING FOR A REACTION SYSTEM COUPLED WITH DIF-

FUSION UNDER TRANSIENT CONDITIONS

A. Necessary and Sufficient Conditions for Exact Lumping under Transient Condi-

tions

As a reasonable assumption we take that the ambient concentration vector

y(R,t) (R E 8V) does not change with time and that the concentration vector

y(r,t) in the interior of the catalyst particle is initially zero. The differential equa-

tions corresponding to transient conditions are as follows:

y(r,t)- DV 2y(r,f) - f(y(r,t)) = 0, (68)

1f -



I
where the first term on the left side represents the accumulation of the reactants

due to diffusion and reactions.

The definition of exact lumping validated in the n-dimensional composition

space under transient conditions can be given as follows. If a reaction system

coupled with diffusion under transient conditions described as Equation 68 can be

exactly lumped by an h x n constant matrix M with rank ii, this means that for

(rt) = My(r,t), (69)

we can find an ft x it nonsingular constant matrix b and an fi-function vector

f(k(r,t)) such that the behavior of S(r,t) can be described by I
19

5y(r,t) - tV2 S(r,t) - f(y(r,t)) = 0. (70)

As discussed in the previous section, here we only constrain b to be nonsingular.

Equation 70 is valid for any value of t including t -- oc, i.e., a steady-state. In

a steady-state, the first term vanishes and Equation 70 becomes Equation 3. From

Equations 14 and 16 we know that

lim ?(,(r,t)) = lim bMD'f(M (r,t))

= lim DMD-'f(y(r,t)). (71)
t--.oo

Notice that t( (r,t)) and f(y(r,i)) are only explicit functions of k and y, and do not I
contain r,t explicitly. Therefore, f(k(r,t)) must have the same form in Equations 70

and 71. Otherwise, the lumped scheme in the transient regime cannot be validated

in the steady-state condition. The only difference is that ( is a function of r and I

in Equation 70 instead of a function of only r in Equation 70. Then we have

f( r(r,t)) = D MD-f(Iy^(r,))

= !MD-'f(y(r,t)). (72) 1
17
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Considering this point and Equation 69, Equation 70 can be rewritten as

a
MNy(r,t) - bMV y(r,t) - bMD-1 f(y(r,t)) = 0. (73)

Now we need to determine the condition under which a system coupled with

diffusion under transient conditions is exactly lumpable. Multiplying Equation 68

from the left by bMD- I yields

MD-' _y(r,i) -bMV 2 y(r,t) - MD-'f(y(r,t)) = 0. (74)

Subtracting Equation 73 from Equation 74 gives

(DMD- - M)-y(r,t) = 0. (75)

This equation holds for any value of oy(r,t)/8t. Considering Equation 68 we have

-y(r,t) = DV 2y(r,t) + f(y(r,t)). (76)

Notice that D is a nonsingular matrix and in realistic problems the diffusivities

for different species are usually different. Therefore, we can choose different initial

values of y(R,0) so that ay(r,t)/at can be an arbitrary vector in n-dimensional

space. Under this condition, Equation 75 is valid only if

bAID - M = 0. (77)

This relation is equivalent to

DM =MD, (78)

or considering that DT = D we have

MT DT = DIT. (79)

This equation shows that the subspace M spanned by the row vectors of Al is

D-invariant.
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According to the result obtained above the necessary condition for exact lump-

ing of a reaction-diffusion system under transient conditions is Equations 72 and

77(or 78, 79). Notice that utilizing Equation 77 we can represent Equation 72 as

f(k(r,t)) = Mf(Mk(r,t))

= Mf(y(r,t)). (80)

It is easy to demonstrate that this condition is also sufficient for the existence

of exact lumping of a reaction system coupled with diffusion under transient con-

ditions. Multiplying Equation 68 from the left by M r.elds

M-y(r,t) - MDV 2y(r,t) - Mf(y(r,t)) = 0.

Letting k'(r,t) = My(r,t) and substituting Equations 78 and 80 into the above

equation gives I
-y(r,t) - (,!t) - f (r,t)) = 0. (81)

Then letting

f(S(r,t)) = Mf(Mk(r,t)),

we have

0'(r~t) - DV2 (r,t) - f(y(r,t)) = 0.

This is Equation 70.

FRom the results of Section IB, Equations 79 and 80 imply that jT(y(r, t)) and

D have simultane-',sly invariant subspaces M. Thus we obtain the conclusion: A

reaction-diffusion system under transient conditiors is exacty 1limpahle if and only

if there exist simultaneously nontrivial fixed JT(y(r,t))- and D-invariant subspaces

M. The lumping matrices M are the matrix representations of AA.

Notice that in this case we can no longer choose D arbitrarily. Accrrding to

Equation 78 we have I
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D=MDR. (82)

The resultant b may not be diagonal.

B. Sample Problem

As ai eyample of the application of the analysis above, we choose the uni- and

bimolecular reaction system used in our previous paper. A uni- and bimelecular

reaction system with 8 species(Li, 1984) is illustrated as follows:

2

CI + C2  C3  + C4
4

1 12 1

I C5  C6  2

C7  C

where the Ci's are species; the numbers are unitless rate constants.

Letting yj represent the concentration of Ci, it is easy to write out the kinetic

equations and the transpose of the corresponding Jacobian matrix jT(y(r,t)).

dyj/dt = - 2y, - 2yy2 +4y3y4

dy2 /dt = -2Y2 - 2y 1+±4y3 Y4

dy31/dt = -2y3- 4y3 Y4 + 2yj y2

dY4/dt = -2Y 4 - 4 Y3 y4 +2y1y2(83

dys /dt = --y5 + y + 2Y2 + v/y6

dy6 /dt = -V/3y6 + 2V3 + V5

dY7/dt = +y+ y8

ds /dt = -y8 + 2Y4 + '/Y7
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-2(1 + 2) -2V2V2 2Y2 1 0 1 0

-2VI -2(1 + 11) 211 211 2 0 0 0

4y4 4Y4 -2(1 + 2V4) -4y4 0 2 0 0

JT(y(r,t)) 4 Y3 43 -43 -2(1 + 213) 0 0 0 2

-1 1 0 0

0 1 -

Suppose that the effective diffusivity matrix D of the system is the following:

I

I

1 (84)

2

3

We have obtained all the fixed jT(y(r,t))-invariant subspaces(Li and Rabitz,

1989). The root subspaces of D are

Span {e, e2 ,e 3 , e4 }, Span{es, e6 }, Span{e 7, es}.

Any subspace of these root ones and any sum of these subspaces are D-invariant.

Then examining which JT(y(r,t))-invariant subspaces are D-invariant, we obtain

the simultaneously D- and fixed jT(y(r,t))-invariant subspaces. They can be used

to construct the exact lumping matrices.

The lumping matrices for 1-dimensional M:

M,1 ("+42 03 02 1 +03 0 0 0 0). 3

The lumping matrices for 2-dimensional M:

03 02 0 403 0 0 0 0 3
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where ai,f , E R. If a matrix contains the same number of ao's and 8i's, the vectors

a and 8 are linearly independent.I
The lumping matrices for 3-dimensional M:

(1 00 1 0 0 0 0

M 3  1 0 1 0 0 0 0 0

\0 1 0 1 0 0 0 0

The lumping matrices for 4-dimensional M:

4 = (1 1 0 "

The lumping matrices for 5-dimensional M:

I 1

I -V2 0 0)

0

M =

I 0 0 )Is= 1 1 1 00

0 0 3 1
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The lumping matrices for 6-dimensional M:

oI

M9 =(
I -0 /1 0 0

0 0 2 I

M10 -

(I1

0

1 
0 

00 0 V 1
Ml 2

1 JV2 0

0 0 1 

0U

M13 = 21

1 1

0

M14 =-

0 0 ]

0 0 1
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The lumping matrices for 7-dimensional M:

1 0

MIS

11

1

M11
-

M17 =

0 0I1

-Ii

I

I

1 0

MIS

o 0 1 0

0 0 0 1

1 1 0 0

I

10

0 0 1 0

0 0 01l
1 -I' 0 0

The differential equations for the lumped systems can be readily obtained by

Equations 80 and 82. For example, for M, the lumped equation is

t)- V 2  t(r,i) - 2 (r,t) = 0. (85)

For M9 we have

(1 1 2 (86)

2
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I
and the lumped reaction rate vector f(k(rt)) is the following:

S -2j, - 21 j2 + 4 3 j4
-2i2 - 2j, j2- 4 3 i8

f(t(r,t)) - -2P3 + 2j P2 -4 34 (87)

IV. EXACT LUMPING FOR A REACTION SYSTEM WHOSE DIFFUSIVITIES I
ARE FUNCTIONS OF POSITION OR CONCENTRATIONS

All discussions above are based on the assumption that the diffusivity d, is

independent of position and concentrations. This is true for uniform catalysts and

in the Knudsen range. It is also a good approximation for the gaseous diffusion

regime. However, when catalysts are not uniform or there are interactions between

the diffusion of different species, the diffusivity can be a function of position or

concentrations. We will prove that in these cases the sufficient conditions for exact

lumping will have similar forms to those already treated.

A. Diffusivity d, is a Function of Position I

Suppose that the diffusivity matrix D(r) is diagonal and a function of r. First

we consider the steady-state condition. In this case Equations 1 and 3 become

-VD(r)Vy(r) = f(y(r)), (88)

-VD(r)V t(r) - ? (r)), r E . (89)

In this case it is not easy to determine the necessary condition. However. we can

give the sufficient condition of exact lumping in the whole composition space and

the desired region of the position vector: jT(y(r)) and D(r) have simultaneously

2
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nontrivial fixed invariant subspaces for all values of y(r) and r in the desired region,

respectively. The proof is as follows.

When the subspace M spanned by the row vectors of M is simultaneously

JT(y(r)}- and D(r)-invariant, as proved before we have

Mf(!kMy(r)) = Mf(y(r)). (90)

MD(r) = b(r)M. (91)

Multiplying both sides of Equation 88 from the left by M and using Equations 90

and 91 yields

-MVD(r)Vy(r) = Mf(y(r)),

-VMD(r)Vy(r) = Mf(MMy(r)),

-VD(r)MVy(r) = Mf(R (r)),

-VD(r)VS,(r) =f(,r.

That is Equation 89.

Under transient conditions and when the diffusivity matrix D(r) is a function

of r, Equations 68 and 70 become

a
5-y(r,t) - VD(r)Vy(r,t) - f(y(r,t)) = 0, (92)

5jy(r,t) - VD(r)V (r,t) - f(,(r,t)) = 0. (93)

We can prove that the sufficient condition under steady-state conditions is also

sufficient for transient conditions except that jT(y(r)) is replaced by JT(y(r,t)).

Since M is JT(y(r,t))-invariant, Equation 90 becomes

Aff(.M'My(r,t)) = Mf(y(r. t)). (94)
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Multiplying Equation 92 from the left by M and using Equations 91 and 94 yields

Equation 93.

In conclusion: A reaction-diffusion system with position dependent D(r) under

steady-state or transient conditions is exactly lumpable if there exist simultaneously

nontrivial fixed JT(y(r))- and D(r)-invariant subspaces or JT(y(r,t))- and D(r)-

invariant subspaces M for all values of y(r) and r or y(r,t) and r, respectively.

The lumping matrices M are the matrix representations of M.

B. Diffusivity d, is a Function of Concentrations of the Reactants

When the diffusivity is dependent on the concentrations of the species in the

system, we have not established the necessary condition of exact lumping. The suf-

ficient condition is the same, except that D(r) is replaced by D(y(r)) and D(y(r,t))

for the steady-state and transient conditions, respectively. In this case Equation 91

becomes

MD(y(r)) = b(y(r))M (95)

and MD(y(r,t)) = D(y(r,t))M (96)

for the steady-state and transient conditions. The proof is similar.

V. APPROXIMATE LUMPING FOR A REACTION SYSTEM COUPLED WITH 3
DIFFUSION

After we obtain the necessary and sufficient conditions of exact lumping for a

reaction system coupled with diffusion under either steady-state or transient con-

ditions, the analysis of approximate lumping for such systems follows by using the

results from non-diffusion reaction systems. Here we only discuss the determination

of the constrained lumping matrices by the direct approach(Li and Rabitz, 1990b). 1
27
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The approach of solving the matrix equations to determine the approximate lump-

ing matrices can be treated in the same way. If the given part of the lumping

matrix is MG and JT(y) has a decomposition as Equation 30, according to the di-

rect approach we need to determine the fi-dimensional subspace M containing MG

spanned by the row vectors of MG. This subspace is as nearly as possible invariant

to afl the basis constant matrices Ak of JT(y). The procedure to determine M is

the following. First, we construct a special symmetric matrix Y:

vn s *-1

Y= E k Q(G) ,)Q(G)(c, (97)

where Q(G= )(k = 1, 2,...,m; i = 0,1, ...,. k - 1) are the orthonormal matrix rep-

resentations of Im(MG(A T)i)T and (MG(AT)o)T - MT which can be multiplied

by a very large positive number so that M T compose the eigenvectors of Y with

the largest eigenvalues. Here al is the rank of A, or is equal to n - 1. Second, the

eigenvalues and eigenvector matrix R of Y are determined. When the eigenvectors

are arranged in R by the nonincreasing order of their eigenvalues, the first A eigen-

vectors form the best constrained approximate lumping matrix containing MG with

row number Ai.

For a reaction-diffusion system under steady-state or transient conditions the

exact lumping matrix is related to a subspace M, which is simultaneously invariant

to all constant matrices Bk or all Ak and D, respectively. Therefore, the deter-

mination of the constrained approximate lumping matrix is the same as that for a

non-diffusion system except that the Ak 's are replaced by Bk 's or Ak's and D. When

D is a function of position or concentrations and D(r), D(y(r)) and D(y(r,f)) can

be decomposed as
p

D(r) = b(r)Di, (98)
i= I

q

D(y(r)) = c(y(r))Dj, (99)
=1 /



I
D(y(r,t)) -- (100)

where b(r), cj(y(r)) and ei(y(r,t)) are parameters, D are constant matrices con-

sidered as a basis of D(r), D(y(r)) or D(y(r,i)). In these cases, the Ak's are

replaced by Ak's and Di's. Then the constrained approximate lumping matrix can

be determined in the same way.

VI. CONCLUSION AND DISCUSSION

In this paper a general analysis of exact and approximate lumping for a reaction

system coupled with diffusion under both steady-state and transient conditions for

constant and position or concentration dependent diffusivity has been given, which

can be used for any reaction system. Uni- and/or bimolecular reaction systems are

only special cases of this general analysis. m
For constant diffusivity, under steady-state conditions the exact lumping ma-

trices can be constructed from the fixed JT(y(r))D--invariant subspaces. The

simultaneously D- and jT(y(r))-invaxiant subspaces are contained in the set of

jT(y(r))D -nvariant ones; under transient conditions, the exact lumping matri-

ces are determined by the simultaneously D- and jT(y(r,t))-invariant subspaces.

For position or concentration dependent diffusivity, the sufficient condition is the

same as that of the transient regime for constant D except that D is replaced by

D(r), D(y(r)) or D(y(r,t)).

For approximate lumping, the determination of the constrained approximate

lumping matrices are almost the same as those of non-diffusion reaction systems.

Under steady-state conditions the only difference is that Ak are replaced by Bk = I

AkD - 1. In the transient case the difference is the addition of D. When D is a

function of position or concentrations, the basis constant matrices of D(r). D(y(r))

or D(y(r,t)) are added.
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The lumping analysis given above can be further expanded to a more general

case. Suppose a system can be described as

Ly = f(y), (101)

where L is an arbitrary linear operator. The definition of exact lumping of Equation

101 is the following: For

S=My (102)

if we can find an ii-function vector t(^) such that

Lt = f'(t), (103)

where L is another ''near operator satisfying

ML = LM, (104)

we say that Equation 101 is exactly lumpable by M.

According to this definition, one can readily obtain the necessary and sufficient

condition of exact lumping for Equation 101 as follows: JT(y) has nontrivial fixed

invariant subspaces. For nondiffusion reaction systems L = L = d/dt and Equation

104 always holds. Then the necessary and sufficient condition obtained in our

previous work is the same as that of Equation 101. For reaction-diffusion systems

Equation 104 gives

MD = DM. (105)

In this case, the necessary and sufficient condition becomes that JT(y) andD have

common fixed invariant subspaces. This is what we obtained for a reaction-diffusion

system under transient conditions. It is also sufficient for steady-otate conditions.

Since L is an arbitrary linear operator. certain partial differential equation

systems belong to Equation 101, and then their lumping problems can be treated.
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Equation 101 may be employed to describe an open reaction system in chemical

kinetics, mathematical models of some reactors in chemical engineering and a large

number vr systems in other areas. Therefore, the approaches of exact and Lpproxi-

mate lumping developed in our work is quite general and can be used widely.
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NOTATION

Scalars

ak (y(r)) = kth coefficient of a linear combination of constant matrices for JT(y(r))

b,(r) = parameters of the decomposition of D(r)

c (y(r)) = parameters of the decomposition of D(y(r))

Ci = ith species of a reaction system

d = positive constant

d, = positive constant

e (y(r,t)) = parameters of the decomposition of D(y(r,t))

Inv(A) = set of all A-invariant subspaces

i = positive integer 3
j = positive integer

k = positive integer

m = positive integer 3
M = subspace of n-dimensional space

M = subspace spanned by the row vectors of MG

n = dimension of vector y

h = dimension of vector j' I
/
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= field of real number

= n-dimensional real space

Sk = the rank of Ak or equal to n - 1

t = time

V = interior of the catalyst particle

OV = boundary of V

A = kth element of vector y

Vectors and Matrices

Capital letters represent matrices; bold-face lower case letters represent vectors.

A = constant matrix

A0  = constant matrix

Ak = constant matrix

B0  = defined as AOD

Bk = defined as AD'

D = effective diffusivity matrix

DA = constant basis matrix of D(r), D(y(r)) or D(y(r,t))

D(r) = effective diffusivity matrix, which is a function of position

D(y(r)) = effective diffusivity matrix, which is a function of concentrations

U(y(r,t)) = effective diffusivity matrix, which is a function of concentrations

D = nonsingular i rix

D(r) = nonsingular matrix

b(y(r)) = nonsingular matrix

[(y(r,t)) = nonsingular matrix

f(y(r)) = n-dimensional function vector

f(y(r,t)) = n-dimensional function vector
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f
f( t(r)) = u-dimensional function vector

'('(r~)) -- dimensional function vector
g(z(r)) =n-dimensional function vector I

I - identity matrix

J(y(r)) Jacobian matrix of f(y(r))

J(y(rt)) = Jacobian matrix of f(y,t)

J(z(r)) Jacobian matrix of g(z(r))

K rate constant matrix

L = linear operator

L -linear operator

l(1) ---ith row vector of M

l - lumping matrix

M = generalized inverse of M satisfying MR= I,

MG = given submatrix of M.

Q = h x A constant matrix

Q(y(r)) = ix it matrix

Q(G)T,) = orthonormal matrix representations of IM(MG(AT)') T  I
r = position vector

R = position vector on the boundary

R = eigenvector matrix of Y

x = n-dimensional vector

X = eigenvector matrix or an n x (n - h) matrix

y(r) = n-dimensional variable vector

tv
y(ri) = n-dimensional variable vector

t(r) = i-dimensional variable vector

#(r~t) = ft-dimensional variable vector

Y = defined as V"' QVG 1Q QGG) 
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!/

s(r) --n-dimensional variable vector

Greek Letters

ai = real number

fli = real number

A = diagonal eigenvalue matrix with Aj as its ith diagonal element

Symbols

= any property related to the lumped system

0 = null vector

0 = null matrix

I
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APPENDIX

We will prove that when the subspace M spanned by the row vectors of the

lumping matrix M is JT(y(r))D-1-invariarnt, then this condition is sufficient for

exact lumping of a reaction system coupled with diffusion under steady-state con-

ditions.

Suppose jT(y(r))D- has a nontrivial fixed fi-dimensional invariant subspace

M with the (n x fi)-matrix representation MT. Its orthogonal complement is Jf in

the n-dimensional space with the (n x (n -,9))-matrix representation X. In order

to simplify the discussion we choose two sets of orthonormal bases for M and K,

i.e.,

MMT - A, (A.1)

XTX= _. (A.2)

Therefore, the matrix (XIMT) is an orthogonal one and its inverse is just the
XT

transpose of itself: ( Ai). Then we have

XT), (XIM r)(XT) = I,. (A.3)

For the following nonsingular linear transformation

z(r) M y(r)' (A.4)

we have the inverse transformation

y(r) = (XIM T )z(r), (A.5)

and

V 2z(r) =(M)VY(r)(X)D1fy(r))
= (XT) D- f((XJ 1r)z(r))

- g(z(r)). (A.6)
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The corresponding Jacobian matrix of g(z(r)) is

J(z(r)) = -8((X) D-' f((XIM T )z(r)))/Oz(r)

= _(X T )D-1 f(y(r) ) Oy(r)

M y(r) Oz(r)

= _(X )D-lJ(y(r) XIMT)IM!
( X T D - 1 J (y (r ) )X  X T D - J (y(r))M T (A7

MD-'J(y(r))X MD-1J(y(r))MT (7

When the subspace M spanned by the row vectors of M is a fixed invariant one of

jT(y(r))D - 1 for all values of y(r), i.e., a left fixed invariant subspace of D - 'J(y(r))

for all values of y(r), we have

MD - 'J(y(r))X = Q(y(r))MX = 0, (A.8)

where Q(y(r)) is an ih x -h matrix and then Equation A.7 becomes

S(z(r)) -(XDJ(y(r))X XTD- J(y(r))MT.
0 iD -1J(y(r))M T

Since the transformation in Equation A.4 is nonsingular, all values of y(r) means I
all values of z(r). Therefore from Equation A.9 we have

8g9(z(r))/8z3 (r) = 0. (A.10)

(i=n - fi + 1, n - ft + 2, ... , n;j -- 1, 2, ... , n - ,h) Vz(r) E Rn

Equation A.10 shows that g(z(r))(i = n - ,i + 1,n - it + 2,...,n) do not contain

the first n - i elements z,(r)(j = 1,2, ... ,n -it). Therefore, -the last -h equations in 3
Equation A.6 compose an exactly lumped model.

Now we will demonstrate that this lumped model can be represented as

V2:(r) = -3MD-f(AM/(r)). (A.11) I
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Let

:P(r) = My(r). (A.12)

From Equation A.6 one has

V 2 ,(r) = -MD-' f((XIM T )z(r)). (A.13)

Considering that these equations do not contain zj (r)(j = 1, 2, ..., n - ft), Equation

A.13 is equivalent to

V 2 k(r) = -MD - ' f((OIM T )z(r))

= -MD-'f(MT k(r)). (A.14)

Multiplying Equation 4 in Section IIA from the left by M and comparing the re-

sultant equations with Equation A.14 yields

MD-'f(y(r)) = MD-'f(MT9(r))

= MD-'f(MTMy(r)). (A.15)

This holds for any values ot, cr). Therefore, letting y(r) take the value M/9(r), we

have

MD-'f(M9(r)) = MD-'f(MT MM9 k(r))

= MD-'f(MT 9(r)). (A.16)

Substituting Equation A.16 into Equation A.14 gives Equation A.11.
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ABSTRACT

This work is devoted to establishing the convergence theorems for the canonical case of

the Lie algebraic factorization of multivariable evolution operators. The definition and var-

ious properties of I-approximants are given in a companion paper. The theorems presented

in this paper give some sufficient conditions for the convergence of the 1-approximant se-

quences. Proofs are given for a specific region of the variables space appearing in the Lie

operator and the theorems are useful for many practical applications.
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I
1.INTRODUCTION

In a companion paper [11, we have given certain transformations which are based

on a space extension concept, to put the Lie evolution operator into a new form poten-

tially amenable to practical computation. The latter paper reduced the general case to

a canonical problem for the Lie algebraic factorization of multivariable evolution opera-

tors. In particular, we reduced the structure of the descriptive functions fl, .., fN in f. V

(Lie-operator) to a quadratic one by assuming a closedness condition on the components

fl,.., fN under the action of V via a space extension technique. This extension, (it may

be a contraction in certain special cases) brings us to the canonical case where the linear

response of the system is characterized by X[ (I is the unit matrix). The importance of the

canonical case lies in the fact that the u-coefficients which generate the t-approximants [1] I1
can be evaluated via finite step algorithms in an analytical way.

The linear response matrix which generates the linear terms of the extended descriptive

functions affects the convergence properties of I-approximants, and it is important to

manipulate its structure via the available parameters, (A, vI, 9/2, .. VN), which enter the I
space extension to change the factorization problem into a canonical one (See ref.111 for

details). Since all these parameters give a certain of flexibility to change the behaviour

of the linear response matrix, we are able to obtain the most appropriate linear response

matrix for our purposes.

We use an N-parameter unitary transformation when we rotate the axes of the space

of the variables of the Lie operator to get a factorization point placed on x2 -axis, [1,0,..,0].

Hence, depending on these N-parameters, the t-approximants of the factorization can have

different structures. As we recall, any component of the vector resulting from the action of

the evolution operator on the position vector can be expressed as a linear combination of

(N + 1) different I-approximants. Therefore, we have to use (N + 1) different I-approximant

sequences for a real multivariable factorization scheme. This is the main difference between 3
the multivariable and one-variable factorization schemes.f1-31. However, a most important

result is the lack of coupling among these different sequences. In other words, each of

this (N + 1) different Iapproximant sequ,-nces, can be constructed through first order

recursions between 4,+j and , without regard to the other sequences. The arbitrariness I
3
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arising in the choice of the v-parameters gives the necessary flexibility to significantly

adjust the convergence of the I-approximant sequences.

The next section will include some preliminary discussion about the convergence prop-

erties of the i-approximant sequences. Third section is devoted to the detailed convergence

analysis. Certain lemmas and theorems will be given with their proofs. The fourth section

will present the concluding remarks.

2. THE SINGULARITIES OF THE I-APPROXIMANTS

In the canonical case, the multivariable evolution operator to be factorized has the

following form

Q = ep{f(z) . V} (2.1)

where f(z) is a given specific (N + 1)-dimensional vector function which defines the Lie

operator under consideration. The linear response matrix of the system is assumed to be

proportional to the unit matrix. The proportionality constant is denoted by A and is called

the "Characteristic Mode". The action of Q on a component of z, say zj, is approximated

by a linear combination of (N + 1)-different I-approximants,

N+I

Qzj ;ZZ cE ) " (2.2)
m 1

such that

t+,, = " 1- (2.3)
V/1 -() a+ tn

where n is the recursion index and the a( ) and (c ) coefficients depend on, ("1, .. ,VN-1),

the arbitrary parameters of the rotation which is used to bring the factorization point onto

the r -axis and the I-approximants implicitly depend on j, not indicated for notational

reasons. The initial element, 1 of the I-approximant sequence can be given as follows

= eA , t (2.4)

where A m stands for one of the characteristic modes. Although there is only one char-

acteristic modal value in the descriptive functions of the system under consideration, it
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depends on the convergence control parameters, V1 , vj, ...vN and may take different values

for each different selection of the v-values. Since we use (N + 1)-different set of v-values

when we generate the action of Q on each separate coordinate, there will be a possibility

of producing (N + 1) characteristic modal values, Al, A2 ,..,AN+1. These values may not

actually represent the true characteristic modes of the system due to the fact that the

evaluation of the characteristic modes of a given system may become quite difficult when

we deal with nonlinear systems. However, they must satisfy certain global features for the 3
sake of numerical convergence. For example, A-values must have non-zero imaginary parts

when we deal with a pure oscillatory system. There is no restriction on the v-parameters,

however we can specify them in a way such that the convergence rate of I-approximant

sequences is maximal. 3
Now, let us consider the recursion given by the Eq(2.3). Recalling that [1]

(M) b(m) 1 -eAt
2 ill A (2.5)

we can express 12 as follows

N+I
E= A I" W eA,-'-' 26

ill1 A

where the superscript, m, characterizes the v-dependence of the corresponding entity. This 3
formula reveals the singular structure of the -approximants and gives dues about the

types of the singularities which may appear in anyone of the elements of the -aproximant

sequences. Before proceeding further, we confine ourselves to this quite simple case.

The right hand side of Eq.(2.6) has certain poles to the b(') -parameters. This can be 3
more dearly explained as follows: If we consider the right hand side of the Eq(2.6) as a

mapping whose domain is the cartesian sum of b 1'(-complex planes, (m = 1,2,.., N + 1)

then, every individual b(')-complex plane has a pole varying with time. At the beginning

of the evolution (t = 0) these poles are gathered at infinity, and their location moves toward 3
the origin of the corresponding b(')-complex plane. This structure is reminiscent of the

Padi approximants. Since we can increase the number of variables by taking second degree

terms in z as new variables, this does not destroy the quadratic structure of the system. We

can even recover the canonical structure by extending the space via a new variable which I
5
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is simply equal to one. The consecutive use of these transformations causes an increase

in the number of the poles of the right hand side of the Eq(2.6). Hence the second order

t-approximants have a nature which is quite similar to the Pade approximants. However

the following distinctions exist.

i) Padi approximants have a single complex plane as a domain, but the 12- approxi-

mant's domain is composed of (N + 1) separate complex planes.

ii) The poles of the Padi approximants are motionless unless the function which

generates the Pads approximants has coefficients varying with respect to time (or with

respect to a corresponding parameter).

iii) 12-approximants can only be related to a special sequence of Padi approximants

(placed into the lower diagonal adjacent to the main diagonal) and the style of increase

in the order is different for both approximants. Indeed, Padi approximant's order is

increased by one, however, the increase in the order of the 12 -approximant is determined

by the number of second degree terms used in the space extension mentioned above.

Similar comparisons can also be made for other t-approximants and certain con-

nections can be established between Hermite-Pad approximants and , -approximants.

For higher n values branch points appear in the structure of , and the domain of the

transformation characterized by f, is again the cartesian product of b('7)-complex planes.

However, each of these planes must be appropriately cut to take care of the branch points.

The shapes and locations of these cuts vary with time due to the time-dependence of the

branch points. As long as we consider finite values of n, these branch points are alge-

braic, however this algebraic structure approaches a logarithmic limit one when n goes

to infinity. Similar behaviour can be observed in the Hermite-Padi approximants but the

spirit of the construction of both approximants are quite different because of their typically

distinct purposes. Since this issue is beyond the scope of this work we shall not get into

further details of this topic. However, we can say comment on the singular behaviour of

the I-approximants as follows:

i) Each singularity of the I-approximants belongs to a specified b('7)-complex plane

and it always remains in the same plane during the evolution.

ii) Whether poles or branch points, all singularities are gathered at infinity in the

composite space of b(')-complex planes at the beginning of the evolution. Each singularity
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moves along a trajectory in its corresponding b(")-complex plane as time evolves and may

or may not reach the origin when t tends to infinity.

iii) If none of the singularities reaches to the origin, then every b m)-complex plane has

a "Clean Region", into which a singularity trajectory never enters during the evolution.

iv) We call the union of these dean regions as the "Main Clean Region" of the system.

Here we use the word "system" to characterize a collection of variables; it is not meant in

a system-theoretical meaning.

Therefore every system has a main dean region during a finite evolution t E [0, T] for

an appropriate value of T. Depending on T we use the following designations:

a) If T = oo, then the system is "Giobal Normal".

b) If T has a finite non-zero value, then the system is "Temporary Normal". 3
c) If T = 0, then the system is "Abnormal".

This terminology follows the earlier work [2,3] and will be utilized below.

3. CONVERGENCE5 THEOREMS

Now, we are ready to proceed to prove certtin convergence theorems. For this purpose,

we consider the following simplest one of the general multivariable factorization problems,

the canonical factorization problem

{Qz }2=i = {eQt(z)'V) }3=e (3.1) 1
where z and V are the position vector and gradient operator in an N-dimensionail complex

Euclidean space. The vector function, f(z), is given as below

N N3
fi(z) = Azi + E_ Ebiikzjzk i = 1,..,N (3.2)

j=2 k=J

Here and in the coming sections, e. stands for the unit cartesian vector [1,0,..,0]

The vector e, is apparently an eigenvector of the linear response matrix Al. The 3
unit matrix structure in the linear response term is dae to the canonical structure of the

problem. As shown in the companion paper [1], the assumption of a canonical structure

of the problem does not cause any loss of generality because we can always convert a

quadratic structure to a canonical one by means of a simple space extension. Indeed, almost 5

I



every factorization problem can be brought into the canonical one unless the structure

of descriptive functions prevent us to find a proper space extension to this end. The

expense of this procedure is an increase of the number of independent variables. Since

these transformations involve a finite number of steps, the theorems proved for the rather

simple factorization problem, also remain valid for the original factorization problem before

the space extension transformation.

The factorization of the evolution operator given by the Eq(3.1) can be expressed as

follows

{ Qz1  e fr {e3T{ l- ) I~z }ue1 (3.3)

where lj depends on z2 ,..,ZN and t. The non-existence of terms including operators cor-

responding to differentiation with respect to the other coordinates z2 ,..,ZN is due to the

selection of a special ordering for the simple evolution operators such that their SEcts

on z, are nothing except multiplication by unity. Furthermore, the dependence of pj-

functions on z2 ,..,ZN can be removed since the factorization can be evaluated at a special

point where z2 ,..,ZN vanish. Hence we can simply write

00

{Qzi}zei = {{ 1I e° 1" }Z].- (3.4)
j=1

where

O'(t) = j(0,,. ...... ;t) + Ab, j = l,.., (3.5)

and bik denotes the Kronecker's delta. Here, we have used the fact that p-o and p, vanish

when all the zj-variables except z, tend to zero.

As an approximation, we define the -approximants as follows

{QZ, },e, {{-I eci = }=,} e ' (3.6)

j=1

By using propertis of Lie operators we can prove that these approximants satisfy the

following recursion

S= 1 (3.7a)

t+= +n =1,2,.. (3.7b)
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Obviously, this recursion is a mapping from the complex plane of 4, to the complex plane of

t,,+,, and the t,,-plane must be properly cut to take care of branch points. The derivation

of the recursion for the t-approximants is based on certain properties of Lie evolution

operators. These properties are derived via Taylor series expansion, so one can expect that

their validities are limited by the convergence domain of Taylor series, and this means that

the validity of the recursion relation of -approximants is also limited by an appropriate

contour surrounding the origin of the t,-complex plane. However, by analytic continuation

of the Taylor series outside their convergence domains, the same type of the generalization

of tne recursion of the t-approximants to outside their convergence domain defined by

the contours in t,-complex plane should also be possible. This means that the recursion

between t, and t, remains valid for the entire complex plane of t,, except the branch

cuts. So, we can interpret the recursion between two consecutive t-approximants as follows: I
i) Each t-approximant corresponds to a point in its own complex plane, and there are

an infinite number of complex planes. Since the n-th complex plane is the domain of the

mapping between t, and ,+ 1 , it is composed of n numbers of Riemann sheets due to the

n-th order algebraic branch point appearing in the recursion between t, and ,+. I

ii) Our factorization point is to be considered as a point in the complex plane of .

Since there is no branch point in the mapping between ti and 2, the only singularity is a

pole accordingly moving as time evolves.

,iii) The .. complex plane is related to the t -complex plane through -, numbers of con- 3
secutiv mappings. Hence, as being the domain of this composite mapping, the -complex

plane must have a structure such that it can take care of all branch points appearing in

the intermediate stages of this mapping. Obviously this structure changes depending on

n. Since our essential goal is to characterize the evolution under ,, the most important 3
form of t6e t-complex plane is its structure appearing when n increases to infinity. In

this case, there appear an infinite number of moving branch point trajectories and the

behavior of these trajectories like their locations etc., completely determines the Dature of

the evolution. However, instead of the considering the entire composite mapping, the use 3
of individual mapping is easy and it facilitates a better understanding of the character of

the evolution.

Since our present purpose is to establish the proofs for the convergence of the -

approximant sequences, not for the entire complex plane of , but for certain clean regions, 5
9
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we shall leave further investigation of entire plane convergence of -approximants to a future

work.

Although the convergence properties of the recursion between ,, and C,+j was shown

in one of our previous works [2,3], we briefly summarize it here to facilitate an understand-

ing of the proofs of the theorems of present wor1r. Now, as we can see, the Eqs(3.7a) and

(3.7b) permit us to write
1

C - ,( 1 ,t) n = 1,2,.. (3.8)

and this results in the following recursion between An and An+I

A = - nI,+ =e" A, = 1 (3.9)

where j is used to specify the Cl-dependence of relevant entities and its value will be

equated to 1 later. Let us, now, consider a majorant function, D(C1 ,t) which converges in

a certain region of the C1 -complex plane, the time-dependent convergence radius of which

is denoted by (,(t) such that D(C1 ,t) remains greater than 1 and also greater than A, for

this region. By appropriately increasing the value of the right hand side of the first one of

the Eqs(3.9) and using D instead of A we can arrive at the foowing recursion between

D, and D,,+ 1

D,+j(Cj,t) = D,(6,){1 + (n + l 1 InRlAIt} (3.10)

The consecutive use of this equation from a prescribed value of n, say N, to infinity enables

us to write

D.( ,,t) = DN(,,t) JH{I + (N + j)IO'N+j, 1 .N+ e(N+3)R(x)t} (3.11)
j=1

The condition for the convergence of the infinite product appearing in the last equation is

related to the convergence of the following infinite sum

00

dN( ,,t) = Z(N +j)ON+jjI ,N+je(N+3)R()) (3.12)
j=1

If this sum converges for certain 1, t and sufficiently large N values and it tends to zero

as N increases unboundedly, then the infinite product in the Eq(3.11) also converges for

same j and I values.
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Since the c-coefficients depend on time, the convergence radius of the infinite product

in the -complex plane varies with time. If we denote this convergence radius by ((t) and

its minimum value by C,,t(t) for t E [0, o0) then the following circumstances may occur:

i) Cmn(t) is greater than zero, then, there is, at least, one "Non-empty Clean Region"

around the origin of the tl-complex plane.

ii) C,, i) equals to zero, then, there is no region which remains dean during the entire

evolution. However, even in this case, one can find a temporary minimum convergence

radius, Ci,,(T) such that it does not vanish for a finite time period t E [0, T]; then, there

is, at least, one "Non-empty Temporary Clean Region" around the origin of the t -complex

plane.

iii) If the temporary minimum convergence radius function, C,,(T) vanishes for any

finite time period, then there is no "Temporary or Permanent Clean Region" around

the origin of j -complex plane. The system under consideration is, then, an "Abnormal

System".

So, we have proved the following theorem.

THEOREM 1:

If the following infinite sum
00

d( I,t) = --(j + 1)laj+ I1ji lVe3 ( \A)t (3.13)
, j= I

converges in a circle around the origin of the I-complex plane, the radius of which is ((t),

then the following statements are valid:

i) If ((t) > ,,t,(t) > 0 for t E [0, o), then, the system is "Global Normal".

ii) If ((t) > ,,i,(T) > 0 for t E [0,T) with T > 0, then, the system is, at least, 3
"Temporary Normal".

As a corollary we can say that if the first condition of Theorem 1 holds then the

sequence of -approximants converges for all j and I values in the regions defined as

11 < (,,in(t) and t E [0, oo) respectively, and they have a permanent main dean region 3
which is not empty with respect to an appropriately defined measure.

Let us, now, consider the following linear form in ZI,Z2,..,ZN

N

h =Z czj (3.14) g
j=1

11
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where the c-coefficients are different than the formerly employed ones. A brief look at the

structure of h, shows that

Ih, I < ZIcFl'r (3.15)
3=1

where r denotes the hyperradial variable in N-dimensional complex Euclidean space of

z-variables as below

r Ij (3.16)

We can also write the following inequality for the derivatives of h, in the same manner

IaZJ < E c1 12 k = 1,..,N (3.17)

A simple but somewhat detailed analysis shows that the following inequalities hold for

these quadratic forms (second degree forms)

N N

jh2 1 < Z Ic k12 r2  (3.18)
j=1 k=1

and

ah2 N NakI< E E c 1 j k k = 1..,N (3.19)
'= k=1

These results can be easily generalized to the n-th order forms via mathematical induction.

To this end, we can assume that the following formulas are valid

N N N

h- = E ... E cj,.Z I zJ2''zj" (3.20)
11 =1 j2=1 j. 1

j= =I .1N N N

ih,,.I < Y, 1 -' E Ici, ,, 12 r" (3.21)
j, =1 j2,=1 j =1

O-: < n I 2E,.. E..j,, '-' k = 1,..,N (3.22)

12



then we can express h,+, in terms of certain n-th order forms as follows

N

h,+1 - hO)z4 (3.23)
j--I

Oh, h~h) + N zj (3.24)

j=1

where
N N N

n =j ... -j. j, j -" j (3.25)j/2-- is =I jr =1

By using the Cauchy-Schwartz inequality for scalar products we can obtain the following

inequalities

Ihn+i I < h )l2r (3.26)
j=1

-h -l+ I <  Ih() I + -0O -n 12 (3.27)

If we compare the Eq(3.26) with the Eq(3.21) we can conclude that the Eq(3.21) remains

valid when n is replaced with (n + 1), so its validity for all positive integer values of n has

been proved. However, the proof of Eq(3.22) necessitates a little more detailed analysis. To

this end, we can increase the value of the first term of the right hand side of the Eq(3.27) by

replacing it with the square root of the sum over the squares of its values for k E [1,.., NJ.

Then, we are able to show that Eq(3.22) remains valid for all positive integer values of n.

Therefore we can easily arrive at the following lemma via appropriate intermediate

steps

LEMMA 1:

Consider a multivariable function, H(z 1 ,..,ZN) which can be expanded into a series

of homogeneous multinomials as follows

H(z, N) = (3.28)
n=0

where
N N N

h,(z, ,ZN) E E ... E Ci2-. ZI Z... (3.29)
j,1 ~ j,1
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This function and its first order partial derivatives with respect to z-variables are majorized

by the following functions of hyperradius given by the Eq(3.16)

IH(zl,..,zN)i < HM(r) (3.30)
8HI M (3.31)

where

HIM(r) E H~r r (3.32)
k=0

and
N N

H(k) = E .. E *c.-'" (3.33)
j=i k=i

Now we are sufficiently equipped for the derivation of a rnajorant function to use in the

convergence proof of the -approximants. To this end we can consider to seek bounds

for the o-coefficients. Since the u-parameters are only special values of the corresponding

/-functions, we axe going to deal with pi-functions instead of u-functions. So, we rewrite
the equations for the g-functions, which are formerly given in the companion paper [1] of

this work as follows

= (0 ) N (tpo= {f~o(t,z -poe ) + E f(o)(t,z -toe, ) O' ,- },=o (3.34)

k=2

N N

fj ' ,( 1z) = e'{EZbjkzzkzl} (3.35)
k=i 1=1

f(+) (t, z) = [f m)(t,z)I* (3.36)
("+)() = Fm(t,2) - {F,,m(t,Z)}.,= 0

fl, (tZ) M > 0 (3.37)

N '/1
F.m(t,x) = f,)(t,z) + E fk (t,z)-.I M > 0 (3.38)

k=2

49 - [,,(Az ]== (3.39)

where the starred bracket means that z1 must be replaced by ' inside the bracket such
that

thaZ (3.40)
zI - /A0
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, = e (3.41)

r M+I = V/T -+ , Z-, 1  M > 1(3.42)

Let us now, seek a bound for f(o),.., f() by using the Cauchy-Schwartz inequality in the

Eq(3.35)
N N

ZE b hl z, z, <13jr 2  (3.43)
.--I L=1

where f, represents the following sum 3
N N

ij= E b lk,2 (3.44)
Sk=1 k=1

Hence, we conclude IfI 0 (tZ)I < r 2 e - (3.45)

where

# = F #2 (3.46)

Equation (3.45) implies that

if( 0)(,/ - 12el)l,=O < 3{I0' + R}e- -t (3.47)

where 1
R= %r 2 -Iz, 2  (3.48)

If we recall that ;1o is a function of time and (N - 1) space coordinates, Z2,..,ZN, then we

can write the following inequalities via Lemma 1 and Eq(3.34) 3
1,o(t; z2,..,zN)I < Mo (t,R) (3.49)

- 1{ 2 + R - + (N - 1)I (3.50)

We can obviously write that 3
M02 + R2 < (M0 + R)2  (3.51)

and
e- o OIo (3.52) 3

15
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where

UI= - e- "] (3.53)

By using all of these inequalities we can arrive at the following partial differential equation

to produce the majorant function M0 for 1LO

(M0  R) (M + R)2[1 + (1 _ 1) (Mo R)] (3.54)

The accompanying initial conditions for this nonlinear partial differential equation can be

given in the following parametric form

M0 =0 R = s1  u = 0 (3.55a, b,c)

Although it is a nonlinear partial differential equation, its solution can be obtained via the

method of characteristics. The equations for the characteristics are

a -- (3.56a)
10S2

8R _ -(N - 1)(Mo + R) 2  
(3.56b)

a_2

a(Mo + R) _ (Mo + R)2  (3.56c)
a52

The solution of these equations together with Eqs(3.55a,b,c) give three parametric expres-

sions t = u(s1 ,02); R = R(s3,s2 ); MO = Mo(s 1 ,s 2 ). The elimination of s1 and 82 among

these three entities gives the following explicit expression

1-uR [1 R4(R-1)uR (
2(N - 1)u 1- u) - (3.57)

Let us now, assume that we have constructed the following majorant functions for the f

and F functions
k k = 1,..,N (3.58)

Pm

IF,,I <(3.59)
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where ..), , and pm depends on time and z2,..,ZN. If we consider Eq(3.42), then we

can produce the following manipulations

f k m )< =j k k > 2 (3.60a)

1-*-  - /m~~m~~

1 -[-(M - 1 ) _,=l + p - z

G 1- - (3.60b)
P -m 

I
As can be shown by a careful analysis, G, is a decreasing function of z1 and is bounded

by unity as long as z"  remains smaller than (m - 1) IiLI + pm*. Hence

o(,,+l)

ifk,-+') I <Ik(3.61)
Pm + I

which implies that
I+1) = k(,) k > 2 (3.62)

nP+ = 

(3.63)

+ (m 1)ILp'

To obtain the recursion among the ,") -parameters we need a little further analysis as

follows f:m-{fm} < (: -- m-G IA _f } •= kO n
ZP 7I +1 1PM PMn K_ P PM + 1

k = 1,..,N (3.64)
Pm [1 i

#(m)I N 1(m ~
< 211: -(3.65)

Pm+1 k=2

If we use Lemma 1 and the following inequalities

(-) - 0(0) < P(R2 + iJA0o)eA < 3(R + IjLo)2e -  
, (3.66)

then we can conclude that

(,,+I) _ (N - l)3(R + Mo)2 e-A ' OM (.01 P + PMa (3.67)

Pm Pm. OR
17
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where Mm(t,R) stands for the majorant function of p'. Therefore we have proved the

following lemma:

LEMMA 2:

The fk'()-functions appearing in the construction of the W-coefficients, axe majorized

by the following functions
Tn)

If m)I < 1 - k =1,..,N (3.68)

PM

where ) and p,,, are functions of z2 ,..zN and t, the definitions of which are given through

the recursions presented in the Eqs(3.62),(3.63) and (3.67).

Let us consider again the recursion for p,,. If we assume that

/ -.+Ie t < W (3.69)

then we can write

C,_ eA tpn (3.70)

Ctn += Pf (3.71-a, b)

where pf can be determined from the quadratic structure of the descriptive functions. As

can be shown after appropriate intermediate steps, ac, converges to a non-zero limit, say
I

a, as n tends to infinity. This implies that

lim p, = p > eAta > 0 (3.72)
n-a

Since the sequence pI ,P2,.., is a decreasing one we can change the recursion for 0(") as

follows
( +() - ) (N- 1)0(R + Mo) 2 e- At aMm30,+1)-1 8R (3.713)p p 8R

This does not cause any remarkable difference in the construction of majorants except a

possible decrease in the convergence radii of the majorant series. The explicit expression

for the solution of the last difference equation can be expressed as follows

-~~Y -(N9)A(R+-)2-t{8A10~

-p" +- +(N - 1)P(R + M o) e -M- 9R P (3.74)
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Now, we can write the following equation through the above development

I'll- I , + (N - i)P(R + Mo) 2 e- 't OM,
&<p p+ OR <

+ (N - i)#(R + Mo )2 _ {_, aM P , 9 pM
Om (NoR (3.75)

By using the previously defined u-variable we can write

'Mm [1-u]1) (R+ Mo)2 OMo

- (N -) p+i +

au - pm, OR

(N - 1)(R + M 0)2 E -R p -m m >1 (3.76)
j= 0

If we multiply this equation by IC I-me -m A and sum both sides over m from 1 to oc , we 1
obtain

aZ - -'00) (f (R + MO)2 aZ
Il +(N - 1) }.0 OR

1_ 1 ]  (3.77)I

where

Z E -- f MmA (3.78)
m I

Eq(3.77) is a first order linear partial differential equation for Z. If we consider the accom-

panying characteristics of this equation as

Z = 0 , u = 0, R = t, (3.79a, b,c)

then we can solve it via standard techniques and it is not difficult to show that the solution

converges in a non-empty region of {u, R} -space. Moreover, we can discard all the cases

where a non-zero R exists, since we are able to bring all factorization problems into a

canonical form. Hence we can replace R with 0 in our all the previous analysis and this 3
yields

=R== (t) (3.80)

]= At 0()-; = 00) -I (3.81) 1
19
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nAt(0t) IW < 1(3.82)

This last inequality provides the boundedness condition of [nI'n+1 ]/&'e At globally for

A < 0 and temporarily (conditionally) for A > 0. These results can be summmarized in

the following theorem.

THEOREM 2:

If we consider a multidimensional system with quadratic descriptive functions which

vanish at the origin and denote its characteristic mode by A, then the following statements

are true:

i) If A < 0, then the system is "Global Normal".

ii) If A > 0, then the system is at least "Temporary Normal".

Our third theorem is exactly the same of the one-dimensional case[2,3], and we give

it without proof.

THEOREM 3:

If we define

w= min Inan +1-'1 '  (3.83)
l<n<o

and , remains smaller than w for a finite fixed n value, say N, then all higher order

(-approximants also remain smaller than w in absolute value.

An explicit expression of this theorem is as follows: "If the system under consideration

is globally normal then the limit of the -approximant sequence, t(s,t) = lim,._.a, ,

remains permanently in the main dean region of the multidimensional complex Euclidean

space as time evolves".

These theorems imply that the best circumstance for the convergence of - approx-

imants is the case where A is negative and j is in the dean region. Since we have con-

siderable flexibility permitted by the space extension transformations, we may affect A

by changing the convergence control parameters vl,..-VN, in such a way that our system

becomes a globally normal system in a higher dimensional space. So we have the power to

handle all factorization problems of augmented Lie evolution operators. Establishing this

capability, we open the way for the development of associated software.
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4. CONCLUDING REMARKS .

In the first one of these two papers we showed that the most systems encountered in

practical applications, can be brought into a quadratic canonical form via an appropriate

space extension. We also constructed an extended transformation which made it possi-

ble to deal with canonical factorizations and permitted certain flexibilities, to affect the

convergence properties of the resulting -approximant sequences.

The first paper included the general formulation and the standardization of the

scheme, and this paper presented the theorems about the convergence properties of the -

approximants. The most important result obtained here is the convergence properties of

the factorization scheme. In other words, we may convert the system under consideration 3
into the another one which has a chrcterist;= mode with n negative reftl parf. This c pens

up the possibility of dealing with global normal systems, however, the convergence control

parameters, v1 ,L',..,VN, and the magnitude of A do -mines the convergence radius. If

the point where j = 1 is outside of the m:.*n clean region then convergence failure may

happen. However, our proofs are obtained uin ; tight restrictions due to the utilization of

the majorant series method. Hence the 4-approximarts may, very possibly, converge unless

one of them encounters singularities of the mapping between that one and its higher order

neighbour, due to the contractive mapping type of behavior of the recursion between them. 3
Therefore, the convergence investigation for a given i-sequence on the entire complex plane

will be an important step to take.

Finally we draw attention to the following cautionary comment. The possibility of

changing one of the characteristic modes of system does not imply the possibility of chang-

ing of its asymptotic character when t tends to infinity. In other words, we can reveal the

"Global Normality" of the system only when it really does exist. If the system under con-

sideration has a composite structure such as only one part of its characteristic modes has 3
negative real parts, then certain evolutions of the system can not have a "Global Normal"

behaviour. In these case, the breakdown of the convergence or a convergence decceleration

may be expected. Hence pre-knowledge about the characteristic modes seems to be quite

useful. 3
21
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ABSTRACT

We have recently shown that the factorization of certain Lie algebraic evolution op-

erators into a convergent infinite product of simple evolution operators is possible for

one-dimensional cases. In this paper, we deal with the multivariable case. To this end,

we formulate the factorization for the general case, then we show that the most of the

practical problems can be brought to a canonical one. The canonical problem has nothing

different in concept but the relevant partial differential equations to be solved can be easily

handled. Two simple illustrative examples and the concludng remarks complete the work.
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1. INTRODUCTION

All dynamical problems of physics and engineering can be characterized via properly

defined evolution operators [1-4]. This is not only peculiar to classical mechanics; problems

of quantum dynamics and non-equilibrium statistical mechanics [5-14) may also be treated

through appropriate evolution operators. Most practically encountered problems necessi-

tate the use of evolution operators in exponential form. Perhaps, the most important of

these types is the Lie algebraic evolution operator which has a first order linear partial dif-

ferential operator argument. There is, also, a close connection between the solution of first

order differential equation systems as initial value problems and Lie algebraic evolution

operators [4]. Hence, to establish a proper scheme to approximate the Lie algebraic evolu-

tion operators is of considerable importance. The resultant should be easily programmable

such that it can be executed rapidly and require minimal memory. The efforts to approx-

imate Lie algebraic evolution operators are not new. A well known early result is the

Baker-Campbell-Hausdorf (BCH) formula where the product of two exponential operators

is expressed in terms of various commutators between the arguments of these exponential

operators 115-171, and the operators are not restricted to be Lie-algebraic ones.

In general, evolution operators have a tracing parameter which guides us when we

develope a scheme to approximate them. Since time is the parameter which determines

the point of the evolution, we can refer to this tracing parameter as time. However, we

must keep in mind that certain exponential operators, like ones of the partition function

in equilibrium statistical mechanics, may have sa me kind parameter but with a different

physical meaning. A similar formula to BCH may be developed to approximate the expo-

nential operators in an infinite product of exponentials such that each factor has a different

integer power of tracing parameter in an increasing order [181. In another context, oper-

ator techniques are often used to connect quantum mechanical entities with the classical

ones [19-28]. Among these, Lie algebraic techniques have been investigated in most de-

tailed manner [29-361. The solution of the first order linear operator-differential equations

with the aid of Lie algebraic methods or via commutator algebra has also been extensively

studied. The use of the normal ordering of the operators provides a valuable means to

solve these types of equations [8,10,11,37-42]. As mentioned above, exponential evoluti-n

3



A

operators are also used in statistical mechanics. There, the arguments of the operators are

different for classical and quantum mechanical cases, and generally, the main purpose is

the evaluation of the partition function (43-461.

Powerful techniques are available to approximate the Lie algebraic exponential oper- 3
ators via Lie groups and via Lie algebraic theories [5-7,12,13]. These techniques are also

used to calculate the classical mechanical trajectories of certain systems by using a prior

known reference trajectory [1-31. Since Lie algebra and Lie groups are frequently employed

in mathematical physics, one can find many references to them in that literature [47-57]. 3
As stated at the beginning of this section, the initial value problem of the first order

differential equations system can be handled by using a vector field concept or Lie algebraic

evolution operator. The evolution operators may be approximated as polynomial operators

in terms of the argument of the evolution operator [4]. Although this approach gives quite 3
accurate results :n the initial period of the evolution, the discrepancy increases as time

evolves due to unavoidable accumulations of errors.

With this information as backround we desire an approximation scheme which globally

characterizes the evolution under consideration. In other words, the scheme should be able 3
to relate any point of the evolution to initial point without a knowledge about the other

points. Hence, in earlier work we found a factorization scheme for Lie algebraic exponential

evolution operators (LAEEO's) for one-variable cases [58,59]. As we have shown, LAEEO

is expressed as an infinite product of simple evolution operators which can be handled

easily and analytically. The action of the truncated products of this representation on a

given function globally converges to a common limit which is the action of LAEEO on that

given function. There are some restrictions on the convergence theorems given in those

works. However these are sufficient conditions, so there still remains flexibility to extend I
the coverage of the theorems. This point will be investigated in our future works. Here,

we generalize (and modify whenever it is necessary) the results of the one-variable case to

multivariable cases.

The remainder of this paper is organized as follows. Section 2. gives the general

formulation of the global factorization for multivariable systems followed by the explanation

of the space extension concept and the definition of the canonical factorization problem

in Section 3. The solution of the canonical factorization problem is given in Section 4.
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A simple illustrative example and concluding remarks are presented in Section 5. and 6.,

respectively. The convergence properties of the scheme are given in the companion of this

work.

2. FORMULATION OF THE FACTORIZATION SCHEME FOR THE

MULTIVARIABLE CASES

A multivariable LAEEO can be written as follows

Q = etL (2.1)

where L denotes a Lie operator defined as first order linear partial differential operator

with
N0

L E fj(Z ,Z2,.., (2.2)
j= I

where fj, 1,2,..,N, are denoted as the descriptive functions of the system under

consideration (e.g., the right hand side of a set of N coupled ordinary differential equations)

and the number of variables is N. Although the the variables are real in most practical

cases, the z-variables are considered as complex valued to facilitate the proof of certain

convergence theorems. The descriptive functions are assumed to be infinitely differentiable

with respect to their arguments in the entire N-tuple complex space which is the cartesian

product of the individual complex planes of the z-variables. Since many practical cases

involve these types of descriptive functions, there is only a minor loss of generality. Indeed

for most circumstances where the descriptive functions are infinitely differentiable for only

certain subspaces of the N-tuple complex space of the z-variables, the problem can be

altered via space extension transformations to satisfy the above assumption. We shall

discuss the space extension concept later. A second assumption about the descriptive

functions requires that they vanish when all the z-variables vanish. This assumption does

not create any loss of generality since a space extenbion transformation can always assure

this property to descriptive functions, as we shall see later.

We expand the descriptive functions to a multivariable Taylor series as follows
00 nj,

()M,.. (2.3)
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I
where PAZ) stands for a multinomial* which belongs to the set of k-th degree homogeneous

multinomials of the z-variables and its superscript, 1 characterizes its place in the set.

The index nk is the number of possible k-th degree homogeneous multinomials. The ak-

coefficients define the system under consideration and are assumed to be known. In this I
text, we use the word "system" to characterize a point in the N-tuple complex space of the

z-variables such that the motion of this point is completely specified when the descriptive

functions are given. To define p(') more explicitly we can write

)= Z 1  Z IZN (2.4)
k -- I ;Z2 "

where 11 +12 +..+IN = k and I is related to 11,12 -.,IN through a function which takes integer

values between 1 and nk inclusive. The functional structure of this relation is completely

arbitrary unless one specifies a scheme for the elements of k-th degree multinomials set.

Utilizing Eq.(2.3) we can write the following expansion for our Lie operator

N oo nh
aLl= ZE a Z (2.5)= aj,k J,k

j--1 k=1 /----

where

3 ,k k (2.6
whioh may be called as "Fundamental Lie Operator". As can be easily shown, the com- 3
mutator of any two fundamental Lie operators is again a fundamental Lie operator. In

other words, the infinite set of fundamental Lie operators is closed under the commutation

operation.

Now, we can construct fundamental evolution operators as below 3
Q(F) e()L,, (2.7)

where a(t) is assumed to be known. We call these operators "Fundamental Evolution

Operators" because of the simplicity of the calculation of their action on a given infinitely

differentiable function.

* We use the word "multinomial" instead of the word "polynomial" to imply multivari-

able polynomials 3
6
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We now review certain fundamental properties of LAEEO's before attempting to find

an explicit expression for the action of Q ), on a given infinitely differentiable function of

the z-variables. If g, h and QL denote two given functions of the z-variables and a general

LAEEO respectively, we can write the following equations

QLfgh} - QL{9}QL[h} (2.8)

QLg(Zi,Z2,..,ZN) g(QLzI,QLz 2 ,..,QLzN ) (2.9)

where the first equation comes from the exponential structure of QL and the Leibnitz rule

of the differentiation of a product. We call the second equation a "Penetration Property"

and it can be derived via consecutive application of the first property on the multivariable

Taylor expansion of g. We define QD as the simplest LAEEO which is called a "Displace-

ment Operator" satisfying the following equation.

N

QDg(ZI,Z2,..,ZN) = eXp{ O-j}g(ZIZ2,..,ZN) =
j=1

g(zI + 0j,z 2 + U2,..,ZN + CN) (2.10)

An examination of the structure of the fundamental evolution operators reveals that

Q(F) 1 m:# j (2.11)
QjckilZm = -.

Hence we can write

i,k,lg(zl ,: ,. , ,..,ZN) = g(zliZ2,..,zj_ , j,kI Zj i zj+ 1,..,zN) (2.12)

The last equation states that the action of a fundamental evolution operator on a given

infinitely differentiable function of the z-variables is calculated through the action of the

same operator on the z-variable which appears in the partial differential operator. To

accomplish this task we can conveniently use the following entities

Z Z 0= = (1 - I,)o(i)zl' ..z I z 1  IN (2.13a, b)

and we simply obtain the following result

Q(F) a'--a 1/(1-1, 1( - )• b l l( - )( .4

j,,I = , ==(e +8Z) = (") z+(1 +) z''(I+ a* (2.14)
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This equation remains valid for all non-negative integer values of 1j, however, the case where

11 = 1 necessitates a limiting procedure to obtain the following exponential structuro

I(F) te a' -- (2.15a, b)
lijkoji:j=e ' z (1 - 1j )I

Now, we look at the meaning of the fundamental evolution operators. The first one of

the Eqs.(2.14) implies that every fundamental evolution can be interpreted as a displace-

ment transformation. The remaining Eqs.(2.14) have this interpretation. If we consider

a set of func.,ions within which every member is continuous and square integrable along

a given finite path in the complex plane of Zj and vanishes at the endpoints of the same

path, then we can easily show that ( F) is a self-adjoint operator on this set. Hence, ev-

e-y fundamental evolution operator corresponds to a rotation in a properly defined Hilbert

space, so they may be considered as unitary transformations. The fundamental evolu-

tion operators play a role like L.', does in the multivariable Taylor expansion when we

attempt to factorize LAEEO. In other words, we can write the following factorization

equation with proper choices of each individual o-coefficient appearing in the fundamental

evolution operators

=) (2.16)Q Qj,k,l
j,k,l

whefe we have not specified a particular ordering of the factors. However, all possible I
fundamental evolution operators are included in the product. The validity of above equa-

tion can be shown via dosed property of the set of fundamental evolution operators under

commutation operation. The ordering arbitrariness appearing in the factorization formula

above gives us the opportunity of constructing the simplest factorization scheme. Since the

action of Q on a given function necessitates only the calculation of the individual actions

of Q on the z-variables, we can deal with the calculation of Qz1 for simplicity. Indeed,

we can obtain the value of Qz, by simply interchanging the roles of zi and z1 . Hence,

our main task is rather to evaluate the action of LAEEO on zi. Now to write a spccific

factorization formula, we can use the following criteria:

i) Factors which include differentiation with respect to same variable must be collected

in the same group. This creates N different groups of factors.

8
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ii) Every group of factors must be composed of subgroups such that every factor of

a specific subgroup must have the factors which have the homogeneous multinomials of

same degree.

iii) Each of these subgroups of factors can be considered as a single fundamental

evolution operator.

iv) The factors corresponding to linear multinomials must be collect,=3 as a single

leftmost factor. This is simply separation of the linear response of the system under

consideration and is useful for certain computational purposes (for example, it may reduce

the accumulation of errors). Therefore we can propose the following factorization formula

N o

Qz1 = QL 1{H e M(3)z }zI (2.17)
j=1 k=O

where A.j) depends on t and all the z-variables except zj, and QL is defined as

NN M

QL= ePt FZ E aL Zk5} (2.18)
11k=1 ez

The consecutive actions of the last N - 1 infinite products of Eq(2.17) on z, produce

no change on it. Hence we can simply discard them and drop the superscript of the

undetermined coefficient, P(4) . Therefore the factorization takes on the form

Qz 1 = QL { eT
ik Zi l }zi (2.19)

k=O

Now, first we have to find a practical way to approximate Qzj and second, we have to

relate the undetermined Pk -coefficients to the descriptive functions of the system under

consideration. The first item can be handled by defining the following "e-approximants"

in analogy with earlier work 158,59]

n

, Q =QLI{1 e' " W' }z, n = 0,1,.. (2.20)
k=O

The over bar will be dropped when we change the definition of these approximant into a

more efficient form for computational purposes. These approximants can be recursively

determined in the following way

{n+ I = QLI 1. ez, n =0, 1,.. (2.21a)

k=O

9



+11
C "+ Z1 l'z = zI(1 - nn,+z) I I 0,,. (2.21 b)

4n+ I=n( - nn 1nn= 0, 1,. (2.22)

where wL have used the penetration property of LAEEO's consecutively and the definition I
of the t-approximants. Although this recursive relation is first order, it is non-linear and

has a quite singular behaviour. If we consider the infinite set of the complex planes of

t,; n = 0, 1, 2,.. we can interprete the recursion relations above as mappings between two

consecutive member of this set. Since every mapping has a different order of algebraic i
branch point which moves in its plane as time evolves, then the limiting plane, &,,, has an

infinite number of moving trajectories of every order of algebraic branch points. Hence,

the value of QzI which can be considered* as may have a quite singular dynamical I
structure depending on the values of the z-variables and time. Since the location of the

branch point trajectories are completely determined by Ak-parameters we can call them

"Generators". Now, we have to give an explicit expression for (o to establish the uniqueness

of the t-approximants. We can write the following equalities for this purpose. 5
AjkQL = etrAr (2.23a. b)

where z,V stand for the position vector and the gradient operator in the space spanned

by z-variables and A denotes the matrix which elements are given above. A careful inves- 3
tigation immediately shows that

QLZ = etA z (2.24)

Therefore

= 1eTetAX (2.25)

where e1 denotes the first cartesian unit vector [1,0,..,01.

Our second task, the determination of /-functions, necessitates more detailed analysis.

To this end, we can use the following superoperator equation for Q 3
TQ thN

N f( [Q]to = I 
(2.26a,b)

* We shall prove this in the companion of this paper. 3
10
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and we can draw on the linear response property as follows

QQLQ' 0 ' OQ(°) _ZTATV + N -'r I

Qm =)L QLQ(Q) ' o

[Q(°)t= I (2.27a, b,c)

where we have imposed the initial condition for Q(O) to preserve its unitarity (I stands for

identity operator) at the beginning of the evolution and have used the penetration property

of LAEEO's. There are unusually complicated operators in the right hand side of the

Eq(2.27b). We simplify them by using the following identity based on the commutativities

of the involved operators

Q- IzTATVQL = ZT ATV (2.28)

and, same identity can be written as follows via certain properties of LAEEO's

zTe - tA r AT VQL = zTATV (2.29)

which implies

QL'VQL = eAtV (2.30)

Therefore we can write

-( { fj, (zt) }Q() [Q to I(2.31a, b)

where
N

f 0) (z t) Q(A) fj(Q(A) z) j = 1,..,N Q(A) = e-tA (2.32a, b)
k= I

Now, we can similarly extract the effect of the first factor of the infinite product in Eq(2.19)

as follows

Q(O) = .o O Q(,) NQ( k ee _QQ. 0--j (', - OZ2i3,"

(2.33a, b)

[Q]t=0 (2.33c)
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We can trace the following steps to simplify this equation.

- ~ag 0p-- (2.34a)
PO i I 5 Zk Z 1  Z k O7Z

(-kLO C) a - (-,'O a 8all3 a (2.34b)

e- A&72 eA a O k O a k = 1,2,..,N (2.35)

at__ I k= f~~zt) -}Q(') I'b~

where

ZI f 1) (Z] ,Z2, --, ZI,t0 = il ( - tLOZ2Z3,.ZN it) +

E fk (Z - IO 7Z2 iZ3 N i ) -(2.37a)

f'(ZI iZ2,.ZN it) = fk(0)(ZI - tLOiZ2,iZ3,, ZN, t) kc = 2, 3, .. , N (2.37b)3

Since we have extracted the factor which includes ;LO 8 from the infinite product repre-

sentation of Q, QMI involves the remaining operators which vanish when z, goes to zero.

Hence (1I) must be finite when z, 0. This, however, implies that the right hand side

of Eq(2.37a) must vanish when z, tends to zero and gives the following partial differential3

equation for pso

49 f o(;O )(jZi-7Z) ± V~ () 8 jZ,3--Z, (2-38)

Now, if we define

N 81

Fo (z,.., ZNQ -) f 0 (Zi /to,Z2,..ZN) ± k (I OZZN 23

12



we can write fAI) in a more compact form

f()(,,., t) = F0 (Z ,Z2),.., ZN 10- F(0,1zZ,..,zN,t) (2.40)
A (ZisizNt) Z=

We can extract the remaining factors of the infinite product representation of Q in this

fashion and write the following superoperator equation for Q(") which does not involve the

z, soperators for k = 0,1,..,n - 1.

aQ() a N ^

-{f ')(Z,t)z p' + I f "( t) -} Q(') EQ( ],o = I (2.4la b)
at I IOz k=I (Zk

Then, we can proceed in the following way to obtain the superoperator equation for Q(n+4)

by using certain properties of fundamental evolution operators.

Q(") - Z °n" Q(Vl+l) (2.42)

N9._.,-n - 2 f ", ( Zt 2,.-. ZN),
-  a i I +

k=2

IQ"+,) = I (2.43a, b, c)

where

r, (1 + (n - 1)p, -z' )-I/(-1) (2.44)

and we have used some pioperties of tle fundamental evolution operators. A careful

analysis shows that

- 0-9 9 aL_ -9 (2.45)
ez -e 19 +  - zn? 0 -

(9Zk aZ2k (9Xk '(9Z]

Therefore we can write

aQ (I -4 j) n - N ) 0 i)
+z + E ') (z, t) }Q(n ,)

k 2

[Q(TL4 -it- --= I (2 .4 6a. h)

13



where

Z ifjt+1)(z,z,..,ZN,t)= f)(KnZIz 2 ,Z,.,ZN,i) +

N =k(' 0(r-nZ3,.2,Z3,.., ZN,t) t-An 014n47aN - (2.4 7 )1

k= 2f( n + 1 n
f k" (zI,Z2,..,ZN,t) A (r-nZ(,Z ,2,.3,..,,,N,t) k = 2,3,.., N (2.47b)

However, the finiteness of f,"+i) for z1 = 0 implies that

o fj (O,z2,Z3,..zN,t) + Z(2)(-o0,..,zi) .5I"O Z2, Z3, - .. Z )

k=2

Now, if we define

_I(. ,, N, = f n)( . , , 1914n ( )  t)N" . (n) _) (2.49)
F(,.,N I f7(KlZI, Z2, ..,ZN) + 1 k (nI 2i2- I, Zk=2

we can write fjfl+I) in a more compact form

11+)(z,,.,ZN,t) = F, (zI,z 2 ,..,zN,t) - Fn(O, z 2 ,..,z N,t) (250 I
Zl

Therefore, we can compactly express all the discussions of this section in the following

theorem.

THEOREM 1: 1
If we consider an N-variable system with given descriptive functions, {fj (zI, Z,.., zN)

= 1, 2,.., N} and consider its LAEEO,

N aI
_Qt =x) 1(2.51)

then we can write the following factorization formula

Qz1 = QL{IH e .e }zI (2.52)
k=O

where N Na

QL exp{ a () (2.53)
1=1 k=j 9Z

14
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if f the following partial differential equation is satisfied by the A-parameters

oat, = A 1(°,0 ', Z  I() + ( n )(-/z , ,Z , " , ,N,t) -:7k
k=2

A,(z2,..,zN,O) = 0 n > 0 (2.54a, b)

where

"+1)(z1,..,zN,t)= Fn((zl,z 2,..,z N,t) - F(O,z,..,zN,t) n >0 (2.55)
Zl

N a
I _nn>0(n1Z2-vN,-7 (2.56)F,,(z,,..,,N,) Z2 i,( , , .., Z) + : "), ,f,,,., t)-ff ,, > 0 (.6

k=2

= (1 + (n - 1),,-z-') -1/(n 1) n > 0 (2.57)

NS(0>() E Q (A) fj( A) Z)) -,
(z,) == f(Q( ) J=,..,N Q(A) (2.58a, b)

Hence, the factorization problem mainly reduces to the solution of an infinite number
of partial differential equations. This may seem to be a forbidden task, however by the

use of the space extension concept the matter can be brought to a level where necessary

information can be easily obtained without attempting the solution of the partial differ-

ential equations given above. Then we shall see that the factorization problem can be

transformed to an easier one such that the equations for ,z-parameters can be handled in

a finite number procedures. We shall discuss this later in a detailed manner.

Theorem 1 gives a necessary condition for the existence of the factorization. The

sufficient conditions can be found when we deal with the convergence properties of the

scheme. A quite detailed investigation is given in the companion to this paper.

3. SPACE EXTENSION CONCEPT AND THE DEFINITION OF THE

CANONICAL PROBLEM

In the previous section, we developed the main aspects of the factorization scheme.

There are some difficulties which may prevent bringing the scheme into a truely practical

level. These may be gathered in the following three groups:

15



i) First of all, the descriptive functions, {fj } seem to contain an infinite number of pa-

rarneters since they are represented in a power series. This necessitates an infinite amount

of input information for the algorithm and is important for computational reasons. In fact,

the descriptive functions encountered in the practical cases have only a few independent

input parameters even if they can only be represented in power series. However, even in

this case, there may be slow convergence due to the fact that the terms at a given order in

the power series affect the further factors of the infinite product of the scheme. If one deal

with the descriptive functions in global manner, these types of problems can be handled I
more easily.

ii) The second difficulty concerns the structure of linear response matrix which is given

by Eq(2.23a). Undesired complications may arise since a matrix will generally rotate the

position vector in addition to the changing its magnitude (an extension or contraction).

Hence , the most preferable matrix to appear in the linear response terms is the identity

matrix, I.

iii) The third difficulty involves the position of the factorization point. The factor-

ization point corresponds to the initial conditions of the differential equations system. In

the factorization scheme we used it in an implicit manner. The factorization point can be

explicitly revealed by writing the factorization formula as follows

Qzi = {QL II ek }6 (3.1a)
k=0

N N

QL =exp~t Z aj,)ck } (3.1 b)
1I=1 k=I

where C and z are utilized to represent the collections of the N-members of the corre-

sponding entities. In this formula, z characterizes the factorization point and C stands

for dummy variables employed not to confuse the intermediate differentiations. The com-

plications arising from the factorization point arise in the calculations of p-parameters.

We recall that the pi-parameters depend on time and on the variables z2 ,z 3 ,..,ZN. If the

factorization point were the point where all z-variables except z, vanish, then the partial

differential equations for the determination of p s would be quite easily handled. This

can be done when the vector z is an eigenvector of linear response matrix A if we use a
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rotation transformation via an orthonormal matrix. Thus we will have A = Al and there

will be no longer a problem with the position of the factorization point.

The descriptive functions for systems of the practical importance are generally express-

ible as multinomials of certain known functions of zI ,Z2,..,ZN. In mathematical language

f,(1) = (Z) (2)..=(z) =< N (3.2)

where the summation is carried over the k-values which satisfy k + k2 + .. + k, <Dj (Dj

is the degree of the multinomial for fi (z)). The 0-functions above are assumed to be known

functions such as polynomic, trigonometric, hyperbolic, logarithmic or hypergeometric and

generalized hypergeometric functions. Any is appropriate for our purposes, but the choice

of the 0-functions is not completely arbitrary. The set of functions must have a finite

number of elements and it must be dosed under the action of the gradient operator with

respect to the z-variables. If we denote the number of the members of this set by Al then

we can define the following new variables

Wk = ,;k (z) k = 1, ..,MA (33)

and reexpress the Lie operator of the system under consideration as follows

M N EfE 9 (3.4)

k=1 j=1

Sinc the terms inside the braces can be expressed as the multinornials of the w-variables,

the problem reduces to the factorization of LAEEO of a system which has descriptive

functions as multinomials in the system-variables. Therefore we change the phase space

spanned by the z-coordinates to a new one spanned by the w-coordinates and the dimension

of the space is also changed unless M = N. In most practical applications M > N, hence

we call the change of space as "Space Extension Transformation". Although certain limited

cases may have a lower dimensional space after the transformation* takes place, we shall

use the word "Extension" with this comment in mind. Now, we can express the Lie

operator of the system unde- c",sideration more explicitly as

N D s n k ( ) P I 
3 5,. .,(z)- = = 1, .. , M (3.5)

k=1 k k

* which is namely a "Contraction"
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I
where Ds is the maximum degree of the multinoriials appearing in the new descriptive

functions of the system on the extended space. The #-coefficient are given with the system

and pV) stands for the homogeneous multinomial in w-variables as follows

) i- i, LW (3.6)-" W1  W2 "'.WJ

and i-indices have the same meanings as in Eq(2.4). Therefore, the number of parameters

to specify the descriptive functions is reduced to a finite value. However, there is still a

possibility of further simplification in the structure of descriptive functions. Indeed, one I
can define the following new wariables for this purpose

k-I Ds

wj PM J=1+Enj 1 < J <Mnj (3.7)
j= 1 j=---1 ,

Then, the descriptive functions become linearly dependent on the W-variables. In addition,

the action of the gradient operator with respect to the w-variables on any homogeneous

multinomial represented by p(I) creates a linear combination of various homogeneous multi-

nornials. Hence, he new descriptive functions of the system under consideration will be

quadratic functions of the w-variables and this is the smallest degree which can be taken

by descriptive functions unless they axe linear in the the w-variables. All these matters

are compactly given in the following Lemma.

LEMMA 1:

If the descriptive functions of a given system can be multinomially expressed in terms

of the members of a finite set of functions which is dosed under the action of the gradient

operator, then one can find an appropriate space extension transformation which converts 3
the system to another one which has quadratic descriptive functions in the new space

coordinates.

Therefore, we can assume that the descriptive functions of a system can be expressed

as followsN NN

f. = (() +a (2)Zk (3.8)

k=1 k= I--=1

where the a-constants are assumed to be given with the system and we return to use our

original tynwo4,s ful simplicity.
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The quadratic structure of Eq.(3.8) is quite simple. However, a constant term arises

which contrasts with the fundamental assumptions of the factorization of LAEEO's, hence

we seek a new transformation which removes the constant terms in the structure of descrip-

tive functions. It will be a significant simplification if the same tr:nsformation makes it

possible to replace the linear response matrix k with the identity matrix I Fortunately

it is possible to find such transformations. To this end, we can define the following new

variables

Wj = zj j = 1,..,N (3.9a)

WN+1 = 1 (3.9b)

Since WN+1 = 1 at the factorization point of the space spanned by the W-coordinates, we

can simply multiply each of the constant terms in Eq(3.8) with WN+I. This gives

N N N

f((W) = %()N+1 +ZE I 14k a(')4' kf' j = 1,..,N (3.10a)
k=1 k=1 1=1

fN+ I(W) =0 (3.10b)

which has no more constant terms and fulfills the fundamental assumption of the factoriza-

tion scheme. Following the same reasoning, the vanishing property of the factor 1Y,,+' - 1

at the factorization point, enables us to replace the Lie operator with the following one

N+1

LEX = E f,(W) + LR (3.11a)

N+1N+41

LR = ("N+1 - 1) N I Yk Wk (3.11b)
j=1 k=1

Indeed, if we properly use the commutator algebra between L and LR we can show that

the all of the terms resulting various commutation operations between L and LR have a

factor as WN+I - 1. Hence we can easily prove the following lemma.

LEMMA 2:

The Lie operator of every quadratic system can be replaced with an extended one

given in Eqs(3.lla,b)
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As we mentioned above the residual operator, LR has no contribution to the evolution

on the factorization point where Wr,,+ = 1. However it permits us to change linear

response matrix into the form we desire. It is sufficient to give the following specific values

to ^J! I

-Yjk = (1 - bi N+1){(A 6
3 k - a') )(I - 6 1, N+1 ) - N+ } j, k = 1, .. , N + 1 (3.12)

where 6jk represents the usual Kroenecker's symbol, and A stands for an undetermined pa-

rameter which may aid in adjusting the numerical convergence rate of the scheme. There-

fore, the descriptive functions take the following forms

N+I N+1

f(W) = \lK"1 + E E bi IW1, "
k=1 lI

j = 1,..,N + 1 (3.13)

where the b ki-coefficients take the following values

,(2)

bjl = (I - 6, N+1)(1 - bk N+1)(1 - b N+, 1)aj + "7jk6 l N+1

j,k, = 1,..,N + 1 (3.14)

The'present Lie operator of the system and the factorization point can be written as follows

N+1 N+1 N+1 N+1

L AP + =5 A: I Wk T-=, (3.15)
j=I j =I k=1 1=1

)= z)(l- 6 ,N+,)± 6 1N+1 j = 1,..,N + 1 (3.16) U
where the z-symbols are no longer variable; they are just fixed values which represent

a given specific point in the space of the W-coordinates together with the unit value of

WN+1. The last thing to do is the standardization of the factorization point. To this end,

we consider an orthonormal set of (N + 1)-dimensional unit vectors W(]),W(2),..,W( N +I)

such that WM1 is proportional to W (f ) and define a transformation matrix T as below

T=WT (3.17)
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S= r(),W(2), ..,W(N+i)] (3.18)

The non-zero elements of T are given below

=s Tk -1 T =svk- 2 < k < N + (3.19a, b,c)

N+I

= {, + E IZ1,11", (3.19d)
j=1

where the v-coefficients are certain complex values which enable us to evaluate the action

of LAEEO on any linear combination of the coordinates as we shall see later. Then, we

can transform our variables as follows

N+1

=ZTj,?lk =,..,N + 1 (3.20)
k=I

and obtain the following Lie operator in the 77-variables

N+1 9 N+i N+i N+I

L N+I + b k I (3.21)
j=1 j=1 k=1 1=1

where bjkz satisfies

N+1 N+i N+i

E T,,,b,,mki = 1 : b,-TmiT, j,k,I = 1,..,N + 1 (3.22)
Mr=1 mr=1 n=I

and the factorization point is, now, given as below

(f) = 1 1 (f) = 0 k = 2,3,..,N + 1 (3.23)

This form of the our factorization problem is the simplest one unless the bjki-coefficients

are specifically equal to zero. We refer this form as the "Canonical Factorization Problem

of LAEEO's" or simply "Canonical Problem". Now, we can dose this section by giving

the following theorem which summarizes the discussions presented here.

THEOREM 2:

If the descriptive functions of a given system are multinomially exprrs+-,' t", I,-

the members of a finite function set which is dosed under the action of the , -
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then the corresponding factorization problem can always be brought to a canonical one

via certain space extension transformations.

4. SOLUTION OF THE CANONICAL FACTORIZATION PROBLEM 3
Let us consider again the canonical problem as follows

NN+N+ N+ 

QZxftE n (4.1)
j=1----1 k=! I -1.i~l I

N+I a
QL = eaXPftA E 7 (4.2)

j=1

Q7 - {QL= { e 'i71 }771}.= 7 (f) (43)

r/ M = 1 77 M = 0 k = 2,3,..,N + 1 (4.4)

Now, we can write the following formula for QL due to its special structure

N+j I m

QL = H e "'71 (45)
j=1

where the all factors except the leftmost one for j = 1 has a vanishing action on the

remainder of the right side of Eq(4.3) due to the fact that every differentiation with respect

to 77k-coordinates is followed by the multiplication with the corresponding r/k-coordinate 3
so it is actionless on the factorization point for k = 2,3,..,N + 1. The P-parameters

can be altered with respect to their values at the factorization point due to the lack of

derivatives with respect to rh,73*r, 1 N+I. Hence, we can write the following new form of

the factorization formula m

Qq= {I ek' " 1 7 l}71=(n (4.6)
k=o

where
Orj, = ;4(0, 0, .., 0, t) 4- At bk k = 0, 1,.. (4.7)1

Now, we shall deal with the partial differ!!ntial equations of the p-functions. We start

with the equation 'or Ao,

aA0O -Xt 1 2oP - e p(Ho0 -- D-p,) - p0 (H1 -4 Doo) + H 2 + D, po} {p}t=o = 0 (4.8a,b)
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where Hs and Ds represents the following homogeneous functions and homogeneous oper-

ators respectively, the degree of each one is denoted by its sulscript

N+l N+I N+l

Ho = Hbill H, (bi I A + bi k 1)77k H2 = k 111,77 (4.9 a,b, c)
k=2 k=2 L--2

N+l a N+i N+1 C

D-1 Z bll Do = (bplk + bjki )7k -(4.10 a, b)
j=2 j=2 k=2

N+1 N+i N+i 4.

D ,  E E N  (4.1Oc)
j=2 k=2 1-=2

If we define the following new variable instead of t, we can remove the explicit dependence

on tim,.
1-- ~(4.11)

Therefore,

i9o _O(Ho + D_1 po) - Mo(Hi + Dogo) + H 2 + D, 0o 1#o}-=o = 0 (4.12)

This, however, implies that

#0 ( # k) 7 + l (4.13)

k=O

and the (4k)-coefficients satisfy the following recursion relation

k-2 k-3 k-l-3
( ( + 1)11 k) - 0  (k-1-2) (1) ,(k-- -3) (m D ji(') H, iL(k -1)(k + .o H :10 IO + E EK' 0 Po0o

1=0 1=0 m=0

k-2

) IA(2) + H 20 + " (Di-) k = 0,1,.. (4.14)

1=o

where eny p-value with a negative superscript and an., sum with a negative upper index wili

be taken equal to zero by definition. The explicit expressions for the first thiee coefficients

are given below.
p(0) __ p , 1

) = I-(Di1H 2 - H,1H 2) (4.15a,b)

(2) - 1

A () -(Ho H2 - HID.H 2 - H 2DoH 2 )+ I(H2H 2 + D' - H 2D, Hi) (4.15c)
3 26'
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1
The other coefficients can be evaluated in the same fashion. Although we are not going

to expblJ'.y present them, they have an important common property which is useful in

the construction of the o-coefficients and can be proved by means of .ne mathematical

induction. We may express, i(k) as a homogeneous multinornial of i,2,3,..,r1N-+, the

degree of which is equal to k + 2. Hence, all the o -coefficients vanish at the factorization

point and this enabler us to write

So(t) = .0 (0,..,0, t) = 0 (4.16)

We may write the following partial differential equation for it which car, be obtained after

some intermediate steps

49 D_ IA, + po Do - DILI = 2oHo - HI + 2oDgo - Do o {p }-=o0 = 0

(4.17)

The solution of this equation can I e expressed as follows

OC

Etk)rk+l 
4.8

k= 0

where the /j -coefficients can be determined with the aid of the following _cursion

k-3 k-l-3 k-2
(k) 1 () (k-l-,,-3) '-)D -L(l) - (k -- 2) p t) (k-1)

(0 -= 0 1=0 3
k-22Hoo k 1 H 6 +2 (k -1-2) I k - I-~k ..

2ojio(k - 1) - H 0ko + 2 AO D - D, )k = 0, (4.19)
L 0

where the symbols which have negative upper indices are assumed to be zero as before.

The first three of these coefficients axe given below

) -H 2 - DHI (4.20a, b)

(2) 2

PI ADJo HI + H 2 IlA0AHo I2)t L(H J..D'1H2 2 D 2) -2>L'h. (4.20Vc)

As can be shown via mathematical induct'on twi is a homogeneous multinornial, the

degree of which is equal to k + I. Hence ,hey vanish on the factorization point so we can

write

(1) = At + it1(0,..,0,t) = At (4.21) 3
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With a little further effort the following form of the partie' differential equation for p2 can

be obtained.

oD_I2+AoDoAD 2= e_,,(2jD 1  _D0 _H 0 _D_ ) {P2}=o = 0

(4.22a, b)

This and the remaining equations for the other 1L-functions can also be solved via series

expansion in powers of ir and the corresponding -coefficients can be evaluated in the same

fashion. We give only the first two of them by skipping the intermediate algebraic s:ps

0'2(t) = b1117, (4.23)

N+I

= - Z bkii(blkl + bilk)i- (4.24)

k=2

Therefore, we a, able to evaluate the ai-coefficients for the canonical problem through a

finite step algorithm. This can als- be programmed fo1 computational purposes. Powever,

the construction of such a program up to any desired order within the limitations of

computers is a quite delicate job. T'iis xill be a task for future work.

Since we now assume that the a-coefficients, the Generators, can bz evaluated, the

final stage of the development is resulting action of LAEEO on the other coordinates

72 ,773,..,'7N+i. Until now, we have dealt with the evaluation of Q77j. However the unde-

termined v-parameters give a certain degree flexibility in the bcheme. Now, we can utilize

these parameters to caiculate the other terms like Q772,Q',;,.,Q77N+3. We start with the

following identity which is satisfied by the transformation matrix, T, of previous section

T(L I + I, v2 + F12,..,vN_,l + FN+, T(vL L12..,N+1)T(F 02, (4.25)

Then we can write the following equations after a careful examination of the structure of

t-approximants

e')(v,,v 2 ,..,VN+l;t) = Qr? k = 1,2,..,N + 1 (4.26)

e'l)(VI + FJ L2 + JP,1..',V+ I- + N+1t = -1)(VI ,V2,..Vl+1 ;t)4-

N

S i z(zl4)(VI ,v2,." vN+1 ;) (4.27a)

25



f( t'+P1 V2 "P2,..,VN+1 dIPN+ 1;) 0 = f(Vi V2,..,VN+1;t )  k = 2,..,N + 1 (4.27b)

The first equation above can be rewritten for N+1 different i/-values such that the resulting

set of linear equations can be solved for t-values appearing at its right hand side. Since

the P-parameters can be considered as the elements of a vector lying in an N-dimensional

space, we are able to choose N linearly independent vectors in this space, the elements

of which correspond to the desired F-values. Hence the inversion mentioned above is

always possible and the actions of LAEEO on the other coordinates axe calculable. We

call the A and v parameters as the "Characteristic Parameters of the Factorization" or

simply "Characteristic Parameters". Their meaning will be clarified in a simple illustrative

problem in the next section.

5. ROLES OF THE CHARACTERISTIC PARAMETERS IN THE

FACTORIZATION SCHEME AND SIMPLE EXAMPLES.

In this section we deal with two simple examples to facilitate the explaination of

our scheme. This will give insight into the concept of space extension and into the roles

of the characteristic parameters in the factorization scheme. We do not give explicit

computations, since substantiating results have already been given in our recen~t work on

the one variable case [58,59]. The convergence theorems given in the accompanying paper

are hufficient toward this end. We chose two typical examples. The purpose of the first

one is directed at an explaination of space extension concept. The second one, however,

reveals the importance of the characteristic parameters.

FIRST EXAMPLE:

This example is taken from the celestial mechanics. The motion of two particles inter-

acting gravitationally can be expressed by the following differential equations (Hamilton's

equations) and the accompanying initial conditions.

d- X46 j 1,2,3 dx- _ '+ j= 4,5,6 (5.1a)

dit d t M
dx+ j - dzj.+6 Xj - Xj43

dx 6 =-- MIM 2g j 1=,2,3 - mim 29 = 4,5,6
dt r di rb' (5 .1 b)
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r = 1(2 - W4)2 + (X2 - XS)2 + (X3 - X )2 (5.2)

i Wi (0) -- j j = 1, 2-..12 (5.3)

The solution of these equations can be given through a LAEEO as follows

z 3i(I) = {e<Lz},= 1 _ j < 12 (5.4)

where

L=12 j()(5-5)

j=1

The descriptive functions of this system are the expressions on the right hand sides of the

differential equations above. This problem is, of course, exactly soluble and our purpose

here is one of illustrating the methodology.

As is very well-known, the first thing to do in attempting to solve the two body

problem is the separation of the center of mass coordinates. Hence we also proceed in a

simil6ar way as follows

nj = + j = 1,2,3 Yj+3 = X -Xj+3 j = 1,2,3 (5.6a)MI1 + M 

M2X +6M2X 
+

YJ-+6 =  +6 + Xj+9 j = 1,2,3 Yj+9 M - 9 = 1,2,3 (5.6b)7fl + mn2

Lc 1 (Ya + Sa + Y9 ) (5.7)
7n1 + M ayl O Y

1R a a __2 aaa) 58

--+ )(Y10-o4 +Y11Y-5+Y12 )- - 5 ,-±+y5-7,+Ye ) (5.8)

L = Lc + LR (5.9)

Therefore,we obtain the Lie operator as a sum of two commutative operators: LC corre-

sponds to the motion of the center of mass, and LR represents the relative motion of one

particle with respect to other. The commutativity of these operators corresponds to the

seperation of variables. Indeed if we write

Qc = e t Lc QR = eLJR , Q = QCQR (5.9a, b, r)
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then we can easily show that only one of Qc and QR can create an evolution when we

apply Q on one of the y-variables. In this sense, the change of coordinates from the z-

variables to the y-variables can be considered a space contraction, because we have two

separate systems with each of lower dimensions. The evolution characterized by Qc is just I
a translation in space and has no more interesting feature for our purposes. On the other

hand, it is useful increase the number of variables in the relative motion as

U = Yj+3 Uj+3 = Yj+9 j = 1,2,3 (5.10a, b)

U7 = (y2 + y +y2)- 1 / 2  (5.10c)

This enables us to remove the root structure appearing in LR because of r as follows

L = 1 1 191 93( L a a9R (- -) (U4  0 I 0 _ _ K

(- + M2 T(UIu 4 +±U2 US + U3U6) (5.11

Now, we have descriptive functions which are multinonials in new variables. However

their degree is greater than two, so we have to use further space extension, in other words,

to increase the number of variables. To construct a rule of thumb, we emphasize that

each new created variable to extend the space adds a new descriptive function such that

it results from the action of LB on the function which relates the new variable to the old

ones. Hence, we choose a function appearing in the original descriptive functions as a

new variable and check the effect of LR on it. If it and the present descriptive functions

are quadratically expressible in the new coordinates, then our goal is achieved, otherwise

we can continue to create new variables until the quadratic structure is obtained. In

the present case, it is reasonable to start with the most complicated term which can be

considered as the product of U7 and uT(uIu 4 + u2Us + U3u 6 ). Hence

=R0 M -+--2)(02 -2 21 - MIq M2903 (5.12) I
where

0,= U7(Uu4 ±U 2U5 +U 3 U6 ) , 462 = UT(U4 +us +u6) 1 t4u 2 3u~ 1

(5.13a, b, c) 3
28

I



In Eq(5.13c) we have used the relation between u7 and u1 ,u2 ,U3 due to the fact that U7

is an extended coordinate. Since the right side of Eq(5.12) and the present descriptive

functions are quadratic in terms of the present variables and 01, '2, 03, we can consider

€,2 and q5 as new variables in addition to 41. However, the structures of LR(02) and

LR(2) must be quadratic in all variables including the new ones for this purpose. Indeed,

the following equalities verify this point

1 1
Ln(0 2 ) = -2(- - )0i12 - 2m m 2g ¢1 0 3  (5.14)

m M 2

LR(03)= -3(-- + -)0103 (5.15)
r,1  M 2

Hence, we can define the following new variables and extend our 7-dimensional space to a

10-dimensional one.

wj = uj j = 1,..,7 wj+7 -=j j = 1,2,3 (5.16a, b)

The Lie operator of the system in this space is as follows

L 1 (2) (5.17)
(- + -)LR' - MIM2gL~

m 1 m9

R ; 4  + WS~ K2+W6 W3-WI7W ~ a(we
8 9

2w 8w %- - 3wawo (5.18)

W 2 W1 0  +W 3  0 o 2wswlo

Now, the remaining steps to arrive at the canonical problem are quite straightforward and

we do not deal with tht'-.

SECOND EXAMPLE:

Our second example is a linear differential equation system accompanied by given

initial values as follows

d N

di = ,,(0) = , j = 1,..,N (5.20a,b)
k=1
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The corresponding canonical problem can be expressed as

y(t) = {Q77,,,=o (5.21)

where

Q = etL  (5.22)

and
N1 +N+IN+I

L A E 1i + TN+1 T771) Tk T.l (5.23)
,=1 1=1 j=1 k=1

where

jk -- (1 -8 , N+I)(Abik - aik)(1 - 6k N+I) (5.24)

and T-ldenotes the element of the inverse of T. If we, now, define

Lo = 11a (5.25)

then we can show that the every commutator of L0 with the remainder of L has an

additive contribution which is proportional to the upperleftmost element of the matrix

T - 1 (A - NI)T. Therefore, if the matrix W diagonalizes A and A is an eigenvalue which

corresponding eigenvector is the first column of W, then we can take all the v-parameters

equal to zero, and furthermore all contributions of the commutators vanish and L0 char- i
acterizes the total evolution. Hence, A characterizes one of the modes of the system under

consideration. On the other hand, if W does not diagonalize A then we can use the v-

parameters to make the first column of T an eigenvector of A. Therefore, the v-parameters

correspond to eigenvectors. They make possible the calculation not only the evolution of

i7 but the all remaining ones.

Although A corresponds to the eigenvalues of A , we do not have to assign the exact

value to it. This may give certain advantages when the calculation of the eigenvalues

becomes a cumbersome process. Hence we can use the factorization scheme even for

approximating the exponential matrix. This subject is worthy of future study.

I
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6. CONCLUDING REMARKS

In this work, we believe that an important step in the factorization of Lie-algebraic

exponential evolution operators has been taken. A complete scheme was constructed for

the multivariable LAEEO's. The effort was driven by a desire to create a method which is

as simple as the one-variable case. The space extension techniques are used to produce the

simplest factorization problem which has a special quadratic structure in the descriptive

functions. However one has to be very careful about the use of the space extension concept.

We assumed that the descriptive functions are infinitely differentiable, and this may not

be the case and certain singularities may appear. Even in such cases the space extension

may work as we have shown in the first example where r is identified obviously a singular

structure. On the other hand, in the case of jump discontinuities, scheme may need further

modification. The space of the coordinates may be separated into distinct regions, and a

different space extension can be used for each region. Evidently, a regional factorization

becomes necessary.

The convergence theorems are given in a companion paper. They are constructed for

certain regions around the origin of an N-tuple space of the 77-variables. The convergence

for the entire N-tuple space is intensively studied.

The programming of the evaluation of the c-variables is another interesting subject.

Its foundations are presented in this work. However the construction of programs requires

that sufficient attention be paid to the unusual structure of recursion relations. Sym-

bolic programing languages like MACSYMA and REDUCE may be useful for generating

executable codes.

Finally we believe that the presented scheme shows promise for being a powerful means

for treating many application in science and engineering. Multi-dimensional problems are

dearly the most interesting for study. One example attractive for study is the well known

three body problem. This topic will be the focus of future work.
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Abstract

We introduce one-parameter groups of transformations that effect wide-ranging
changes in the rate constants and input/outpu: fluxes of homogeneous chemical
reactions involving an arbitrary number of species in reactions of zero, first and
second order, Each one-parameter group is required to convert every solution
of such elementary rate equations into corresponding solutions of a one parameter
family of altered elementary rate equations. The generators of all allovked one-
parameter groups are obtained for systems with N species using an algorithm
which exactly determines their action on the rate constants, and either exactly
determines or systematically approximates their action on the concentrations.
Compounding the one-parameter groups yields all many-parameter grouns of
smooth time-independent transformations that interconvert elementary rate
equations and their solutions.

I. Introduction

The response of kinetic systems over extensive regions of their physical para--
meter space - the space of rate constants and input/output fluxes - is of wide interest
in many different contexts. For example, chemical system modelling can involve
solving large numbers of coupled rate equations with considerable uncertainties in
many values of the rate constants. In other problems some of the system parameters
(e.g. input fluxes of chemical species) may actually be controlled, but determing
the optimum choice of parameter values would require exploring a large domain of

0 J.C. Baltzer AG, Scientific Publishing Company
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244 C.E. Wulfman, H. Rabitz, Global sensitivity analysis: I

control-parameter space. Conventional gradient-based local sensitivity analysis tech-
niques [1) have limited applicability in problems of this type. In addition, fully
statistically-based approaches [2] do not allow for an analysis of the structure of
the parameter space. Other methodologies [31 based on repeated sampling of points
in the parameter space suffer from the same problem and often require an impractical
amount of computational labor.

I. two previous papers, an alternative approach to sensitivity analysis, using
Lie transformation groups, was introduced as a method for investigating the consc
quaneces of large changes in parameters in kinetic equations [4,5]. The present
paper extends this effort into the realm of nonlinear kinetics.

The thrust of this work is the development of a systematic procedure that
yields mappings which transform solutirnis of a system of kinetic equations through
the hyperdimensional space defined by all rate constants, chemical species, and time.
Here we will not, however, consider transformations of the time variable. We also do
not allow the transformed rate constants to be explicit functions of the concentration
variables.

The mappings are achieved by the application of operators T(a) = exp(a U) of
one-parameter group:, where a is a real parameter and U is a group generator of Lie
type. This generator is a first-order differential operator which may act on all pliysica
parameters and variables of the kinetic system. Sv:.,oolizing concentrations by x i and
rate constants by k., the generator here takes tht form

U =7 hi(x, k)a/axi + ,g(k)aak,, . (1.1)

Here, x represents the set of x i and k represents the set of k.. Henceforth, x,k
represent vectors with components x i and k. in a Euclidean space of x, k. The operator
of finite transformations T(a) = exp (a U) acts as follows:

On a rate constant k.:

T(a)k, = k, = K,(k;a);K(k; 0) = km. (1.2a)

Cn the concentration x of species i:

T(a)x, = ii = Xi(x,k; a); X,(x,k;O) = x i .,.1,)

Figure 1.1 depicts the type of mapping being considered.
As indicated in eqs. (1.2), assigning the group parameter a the value zero gives

the identity transformation. As a is shifted from zero by infinitesimal and then
finite amounts, changes in k and x develop which are at first infinitesimal, and then
become increasingly profound. For a fixed value of the parameter a, T(a) acts on
the moving vector x(r) to give the transformed vector i.(t) = X(x(t),, 2). I: thus
transforms the curve in concentration space described by x(t) into a new curve depic.-
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kU

PI

Fig. 1.1. The mappings in x, k. t space. The mappings P - represent the concen-
tration changes x - i and the changes in rate constants k - k, while the time t is
held fixeA As k is not a function of x or r, the "-jectory P - P' is mapped into
a traj ctory P - P' that Lies in a hyperplane of constant k.

ing an altered evolution of chemical concentrations. By changing the value of the
parameter a, one is able to convert an initial evolution curve into a one-parameter
family of evolution curves. Thus, in fig. 1 .1 the upper curve may be considered as
one member of a family of transformed curves, a curve obtained by giving the group
parameter a specific value. The value of the group parameter a can be assigned by the
invest.6atot, but it is neither a rate constant nor a concentration. Its chemical
significance is determined by the functions K, and XY in (1.2). This significance, and
that ot diW geneiator U, can be assessed by investigating the action of the operator
of the infinitesimal transformation T(6a).

Letting a 6a, one has - 3
exp(aU) - exp(6a U) - I + ba U. (1.3)

Thus, for an infinitesimal transformation,

i= x i +6aUxi=x, +6ahi(x,!'); k km +6aUk. kM + bag,(k). (1.4) 3

I
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Consequently, if one de ines 6xi as xi - x, and 6k, as k. - k. in (1.4) one has

6xi = bahi(x,k), bkm = 6agm(k) . (1.5)

It follows that T(ba) changes the concentration xi by an amount 6a hi that may
lepend upon all concentrations x and rate constants k. Similarly, the transformation
changes the rate constant k, by an amount 'iag, that may depend upon all rate
constants k. As an example, consider the generator

U = kil x, 3ax + 2 18kol (1.6)

and its action on a system involving a single species obeying the rate equation

dxl/dt = klo + kil x, + kll xi . (1.7)

This generator determines a shift in the concentration x, by an amount 6xl = k11 xi 5a,
i.e. a shift proportional to the product of the concentration and the seccd-order rate
constant. This determines a consequent shift in dxl dt by an amount d(kll x, 6a)/dt .
= 5a kil dx 1 , dt. It also determines a shift 6k,0 = 26a in the flux kl 0. The generator
does not affect either ki, or klla.

Now, if it were true that the shifted concentration obeyed the same rate
equation with the shifted value of k10 . the generator (1.6) could be of use in investiga-
tions of the consequences of changing the rate of supply or removal of the reagent.
The operator T(a) = exp(aU) could then be used to determine the relation between
changes in the flux and changes in the concentration x, th- extent of both changes
being determined by the value of the parameter a. However, the U of (1.6) was
chosen at random and can not be exp-cted at each value of t to convert x(t) into

-(t) that obey the altered rate eqaation.
If the U of (1 .6) had the property that UF = 0, where

F = (klo + kil x, + kill x,), (1.8)

then exp(aU) acting on the right-hand side of (1.7) would leave it unchanged, i.e. nkot
change the reaction rate. This is because

exp(aU)F = (1 + aU + 1 aUaU + + +)F (1.9a)

would then give

F+ 0 +0+ + + - F. (1.9b)

This is not, however, the restriction we wish to impose.



C.E. Wulfman, H. Rabitz, Global sensitivity analysis: I 247 3
The restrictions we impose upon the T(a), and hence the U's, so as to obtain

chemical information from them are as follows: Each T(a) will be required to have a
unique action on all k, x, in an elementary kinetic equation, map contiguous values
of k. and x, into contiguous values of k and 5ei, and give k and i that also satisfy
elementary kinetic equations (cf. section 2 below). In addition, we shall require that
all the variables a, x, k are real. Taken together, these requirements ensure that the
transformation T(a) maps solutions of the set of kinetic equations

dxi/dt = ko + kox j + kijjxjx1,  (1.10a)

into solutions of the set of transformed equations I
dj/dt = kjo + kij + kqjj,. ( .1Ob)

They impose restrictions on the form, of the generators U sufficient to ensure that
the U may be determined algorithmically. Because of this, one has available a systematic
method for investigating the manner in which changes in rate constants are associated 3
with changes in species concentrations and their time evolution. These restrictions
are not equivalent to requiring that T(a) leave reaction rates dxi/dt invariant.

In the next section, we outline an algorithm for determining the allowed Lie "
generators U and use it to completely determine the terms in the generators which
govern the transformation of rate constants of kinetic systems with an arbitrary
number of species. The remaining terms in the generators, governing the transforma- I
tion of species concentrations, are approximated by power series whose zero-, first-,
and second-order terms we determine.

2. Derivation of approximate invariance operators: Their action

Let a set of kinetic equations be given as U
= r(x,k),

with

; dx/dt; -cc < t, x, i <c

r = (r,, r 2 , . )

ri =kio + kijx, + kiji, xx F, j' ;1, j

i,jj' 1,2..; -2-, <k < cc (2.1)

II
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The evolution operator of this system is then exp(tV), with

V = r.V,, Vx =(a/axl,aix2 ,...). (2.2a)

That is,

= exp(tV)x = X(x, k;t) (2.2b)

is the vector that x evolves into after a time interval t.
Define the operator exp(aU) of a one-parameter Lie group of transformations

with real parameter a, (--c < a < -o) and generator U of the form

U =h VX + g.Vk,

where

h =(hl,h2,, ,), hi = hio + hx + hii xx ,. + ++"

h, h,= hij,j , etc. (2;3)

Here, and in the remainder of the paper, we use the index m in him, kim and gi. to
signify any of the values 0, j, jj' ....

The coefficients him may in general be allowed to be explicit functions of t,
x.k. The coefficients gi, are not allowed to depend upon x or t but can depend
upon k. In ref. [4] it was shown that with these restrictions the action of exp(aU) on
the variables x and k is to give a set of transformed variables Y and k in which the k
have fixed values that do not change with time, while the Y are, like the x, running
variables whose values change with time. On transformation, the new values of the kim

depend upon the old values, but not upon x or t: geometrically, the space of the kim
is an invariant subspace of the space of x, t, k. The kim are allowed to take on any
real values, and in particular may take on the special value zero without altering the
general form of the equations given in (2.1).

It was also shown in ref. [4] that the transformed equations will b' of the
same general form, (2.1), with x replaced by Y and k replaced by k if and only if

W_ [ V, U1 + au/at = o. (2.a)

In this paper, we shall require that the him are time independent so that here a U/a t is
zero. W is then easily seen to be of the form

/
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W= w.V ,

with W= (WW
2 ... )

and

wi =Wi0 + wiix i + wiii,Xi X, + + +. (2.5)

For (2.4) to hold in the time-independent case, it is necessary that each of the 3
coefficients wire vanish identically. For reasons explained below, we shall at first
approximate h by the terms explicitly listed in (2.3) and only require that the co-
efficients given explicitly in (2.5) vanish. The resulting quadratic approximation to
the generators U will later be improved by methods discussed in the succeeding
paper II. Each wire in (2.4) is a bilinear function of the kitn and him, and is linear
in the gi,. Ou; first problem is to determine the him and the gi,,,. 3

Before determining the generators in which h is quadratically approximated,
it is helpful to understand the effect of allowing h to depend upon polynomials of
arbitrary degree in the x i .To this end, we classify the contributions to U, V, W accord-
ing to their degree in x. We write

r = r( °) + r (l ) + r ) ,  (2.6) 3
where r (P) is a homogeneous polynomial of degree p in x, and we write

V( P - 1) = r (P) • V •

to indicate that the corresponding contribution to the generator is of one degree less.
Then

V= (r (° ) +r(1) +r (2) ). V  = V( - ) + V (° ) + V )

U = (h(O) + h(l) + h(2) + h(3) ++ + )'V + Z.Vk

= U( - 1) + U(° ) + U( ) + U(2) + + . g'Vk,

W = [U, V] = W(-1) + W(o) + W(1) + W(2) + +. (2.7)

Now the commutator of U(m) and V( ") is of degree m + n, and the commutator of
k Vg and V( n) is of degree n. Thus, the vanishing of W requires that

3
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o = w -  = [u - ) v(°)] + Iu€° , v<-1 ] + g.vk(r°Ovx) (2.8a)
o = w = [U(- , v' ) + [U{° , v(°)] + g vt-')] + g.Vk(r) .V) (2.8b)

0 =WO = [U(0 ), V(')] + [U( ), V(°)j + [U(2), V(- )] +g-Vk(r )'Vx) (2.8c)

0 = W(2) = [U" ), V(1)] + [U(2), V(°)] + [U( ), V(-1)]  (2.8d)

0 = W(P) = [U(P - 1), V(1)1 + [U(P), V00) + [U(p + 1), V(-)1, p > 3. (2.8e)

Note that each of these equations stands for a set of separate equations wi,, = 0,
where Wim is the cocfiicient of

afax i, x~a/ax,, xx1.aix - - - as m = Oj, jj' (2.9)

A key feature of the set of equations wim = 0 is the fact that their rank is much less
than their order, so that their solution contains many free parameters. If we do not
allow cubic and higher degree polynomials in x into U and W, we find that the equa-
tions wire = 0 for W(-'), 0A°), W(') are the set of simultaneous linear equations

k- hipkoI + = 0, i= 1, 2,... ,n
p

hpo + kp) + hik1 p - jip kpi - (hipi 4 hiip)kpo} + gi1 
= 0

p

i,j = 1,2,.... n

7 hpi(kipk + kikp) + hpk(kip, + ki1p) - hip(kpik + kpkj) + (hpik + hpkj)kip

p - (hipk + hikp)kpi - (hip + hi/p)kPk} + 9ijk + giki = 0

i,j,k= 1,2,...,n. (2.10)

In this "quadratic" approximation, each component of g is uniquely determined
by a single equation if one chooses r to be a one-term homogeneous polyncmial.
Since the general solution of the equation is an arbitrary linear combination of these
special solutions, one may make this choice without any loss of generality. In this
linear combination, the coefficients may be arbitrary functions of the kim. We shall
say that the generators Urn in a collection are * independent" if no linear combina-
tion of them

I
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is identically equal to zero when the coefficients Cm in the linear combination are not
functnos of x.

The remaining sections of this paper will make use of the quadratic approxi-
mation to the generators and the approximation to (2.8) obtained by dropping all U
W(P) with p greater than 1. We shall term this twofold approximation the "quadratric
approximation". In paper II, we will investigate more accurate approximations to the
generators and show that the quadratic approximation is of great utility.

In the two-species case, we obtain twelve equations wi. = 0 from the quadratic
approximation to (2.8). Their general solution is a linear combination of twelve
independent special solutions. Each special solution fixes a generator U, listed in I
table 2.1. The generators whose h's are of zero or first order in x are exact solutions

of (2.3).
Inspecting table 2.1, the reader will note that we have chosen the bj, to be

of the form (here, gio is the g vector of Uo, etc.)

U.o -/axi + gi°.Vk, UV = xia!axi + g". Nk I
Uii , ,/ux i + gi . (2.1)

That is, eqs. (2.10) allow one to choose the action of each Uupon the species concen-
trations and then determine the action on the kinetic coefficients that is required to
leave the kinetic equations invariant up through terms quadratic in the concentrations.

This procedure generalizes to systems of three or more species. As a result. one
can easily obtain analogously exact and quadratically approximated invariance
generators U for kinetic systems (2.1) involving an arbitrary number of species. In
the general case, the generators obtained with the aid of eqs. (2.10) are:

-- a/ax - 7kaiak, - milakm - 27k1 i 'ka kI .M *i i

U.i = x, a/ax i + k1o a/akio + k1 a/akii - kiiia/'akiii
*i

+ 7 k m Bijm kijM _ kii/akii  - I
j.m *i i

- 2 7 ki,,a/ak, - 7 k,1M al8, 1m
j~Mi

For * i: I

I
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U = x, a/ax, + k,0 8/a k,0 + kii a/a ki1 + (kjj - k,,) aiaki1

+ I kjm. a/akim -Xkmia/akmj + kitia/ak,,

+ (kj,, - 2k,,,)a/ak, 1 + (i - kj~1kj

+ I kjim a/akijm + 7_ (k,,m - km)aakijm

-2 kmj/ki - 7_kmin alakmin
m*i m.n *

Ujj= x, xia/axi + 2k,0 a/ak 1 + k,,alakiii

+ 27 kU33k - Z kj a/ak 5 . (2.12)

Forj i:

Ujj= x,x,aWax, +kjo a/aku, + kjoa/aki +7kjm alakjm + 2kii a/akiii

+ 7_ kim alakijm - 7 kmialakmij
m * i' m* i I

U,,, = xx, a/ax, +2k0 aaki,+ 2kialak,, + (2k1, - ialki

+2 7 kim ala kim - 7kmja/.akmij. (2.13)

Fcr -,j,i' all different:mi

U.~ *, j

+ I kjmalki -7~km~j/akmjr (2.14)
mj m

In this list, the generators U,0, Uji, and L41 exactly satisfy the determining eqs. (2.8).
The generators U,51, Ujiq. and Ujj satisfy (2 .$) in quadratic approximation.
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3. Finite transformations

As mentioned earlier, corresponding to each generator U there is an operator
exp(aU) of finite transformations. One way to determine the effect of this upon
each variable x,, k. is to expand the exponential in powers of aU, carry out the
indicated actions and sum the resulting series, which sometimes terminates, has evident
recursiveness, or is recognizable as the MacLaurin expansion of a simple function.
Often, a more practical method is to integrate the set of equations [4] :

6xI  6x 2  _6ko 6ko 65k11  8k2 .

h h2g 2 g 1  g21i'

When the h are of the form we have chosen, the necessary integrations can all be
carried out analytically.

Note that the only concentration altered by Tim(a) = exp(aUm) is x i . One
finds using (3.1):

Tio(a)x i = x i + a, T(a)xj = xie0 , "

Tj(a)x i = x, + ax1 , f * i, Tii(a)xi = x 1[(1 - axi)

Tii(a)xi = xea, j * i, Tj1r(a)xj = xi + axx r , i j, j'. (3.2)

The effect of each of the finite transformation operators on the kinetic para-
meters kim are listed in table 2.2. As an example, one finds from table 2.2 that T10

acting on k1o gives kjo = k1o - ak1 I.
Because T10(a) and T20(b) leave 1j and X2 invariant, their action on the

kinetic equations can be determined by replacing xi by xi + a, or x 2 by x 2 + b, in r
and determining the coefficients cii1 of the various powers xjx i . of the concentrations
in the equatiun for ji. Then one finds kij' = cii,'. Because T 0 and T20 carry out
translations of x while leaving the kinetic equations invariant in the generalized sense
thai the quadratic polynomic form of r is preserved, we shall term them "invariant
translation" operators. -

In all the generators other than the U10 , the operator a/axi is premultiplied
by either x, or xj. As a consequence, these generators vanish at the origin of x.
Because of this, the corresponding operators of finite transformations T cannot move.
a point at the origin. If one lets U be a linear combination of the generators in table 2.1,
the finite transformations may be obtained by solving eqs. (3.1) de novo.

Before concluding this paper, we would call attention to some geometrical
properties of our transformations. First note that the evolution generator V is a
special type of U with g = 0, and that the corresponding operator of finite trans-
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formations exp(aV) becomes the time evolution operator if a is replaced by t. Equa- 1
tions (3.1) then simply restate the kinetic equations (2.1). (Of course, V is supposed
known, while i, the analysis just completed we have determined the U's allowed for
a given V.) Now the operator exp(tV) evolves an initial point into a trajectory in the
space of x, k without changing the k's. Taken together, all these trajectories constitute
a flow because the coefficients ri in (2.1) everywhere define a unique infinitesimal
transformation exp(b tV). Each operator exp(aU) whose U satisfies the determining
eqs. (2.8) will take a point P on such a trajectory and displace it in a transverse
direction, by changing both x and k, giving an image point P. If, with the same value
of a, exp(aU) acts on another point P' of the original trajectory, it will carry this

I

1.1

I I I

Fig. 2.1. Transformation flows eaUx transverse to evolution flow s etrx. For each
fixed value of the group parameter a, the transformation with generator U carries
the evolving concentrations xi(t) into an altered set of evolving concentrations. The
transformed concentrations obey a set of elementary kinetic equations with altered
rate constants.

into an image point P. Because exp(6aU) everywhere defines a unique infinitesimal
transformation and U is not proportional to V, the collection of all these trajectories
produced by exp(aU) constitutes a flow transverse to the flow produced by the
evolution operator. As indicated in fig. 2.1, the evolution operator will evolve the
image point P into a trajectory which will pass through P at the same time t that
P is evolved into P'. The proof of this observation follows from the fact that in
deriving (2.8) we have required that au/at vanishes. Thus, (2.4) becomes I

I
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[U V] = 0, (3.3)

which implies that

exp(tV) exp(aU) (x, k) = exp(aU) exp(tV) (x, k). (3.4)

When the generator U only approximately commutes with V, (3.4) will only hold
approximately and the point obtained by transforming, then evolving, will not
necessarily coincide with the point obtained by evolving, then transforming. This is
the case for the generators U], , for example.

4. Conclusions

Inspection of eqs. (2.8) shows that if U( - 1), U(° ) , and U(' ) all vanish, then U
does not act on the rate constants k. Thus, by determining all U with nonvanishing
U( - 1), u(O), U" ) whose T(a) transform elementary rate equations into elementary
rate equations, we have found all U generating one-parameter groups exp(aU) that
transform elementary rate equations into elementary rate equations with different
rate constants. The U and the Uq have been determined exactly. In the UOF,, the
functions governing the transformation of species concentrations have been deter'--
mined to second order in the concentrations, and the functions governing the trans-
formation of the rate constants have been exactly determined.

Throughout this and the following paper, two one-parameter groups are
composed by allowing the second to act on the result obtained from the action ot ,ne
first. Thus, if

x, = exp(bU,1 2)x, = x, exp(bx 2) (4.1)

and

x2 = exp(aU222 )x 2 = X210 - ax 2 ), (4.2)

then the effect of the transformation exp(bU112) exp(aU222 ) is to first shift the point
with coordinates xi, x2 to the point with coordinates (xj , x2). It then moves this to
the point with coordinates (xi = x, exp(bx2),x2). Written as functions of ttle co-
ordinates of the initial point, the coordinates of the final point are therefore - I

(xlexp(bix 2 /(1 -ax 2 )),x 2 /(I -ax 2 )). (4.3)

From the one-parameter groups with operators T,(a,) = exp(a%,U), one may
construct many-parameter groups Tao . . .(aa,aa,.. .) = exp(a, U,)exp(aa U. ...
whenever
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U
for all a, 1, v. As all many-parameter groups may be obtained from one-parameter
groups in this way, it may be concluded that our determination of the generators of
all one-parameter groups that transform elementary rate equations into different 3
elementary rate equations at once determines, exactly or approximately, all generators
of many-parameter groups with this property. (In the following paper I, a list of such
many-parameter groups is given for systems involving two chemical species.)

To conclude: In this paper, all generators of all one-parameter and all many-
parameter groups of flows that trarsform elementary rate equations into elementan.
rate equations with different rate constants have been determined either exactly or
approximately. A particularly simple generator basis has been chosen and the finite
transformations obtained by exponentiating each g'-erator have been determined.
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Abstract

This paper establishes a number of properties of transformation groups that map
elementary kinetic equations into new elementary kinetic equations with altered
rate constants. The chemical significance of the transformations is assessed by
applying them to systems involving two reacting species. There are then twelve
one-parameter groups of mappings. Some mappings may be used to study the
effects of changes in input/output fluxes on concentrations and their compensation
by changes in other rate constants. A number of mappings transform nonlinear
kinetics into approximately linear kinetics valid in regions larger than those obtained
by standard methods. In some cases, the linearization is globally exact. Some
mappings create lumped concentration variables and may be used to systematically
reduce the number of manifest concentration variables in nonlinear, as well as
linear, kinetic equations. The global mappings may be characterized by the functions
of rate constants and functions of concentrations that they leave invariant.
Although they produce large changes in rate constants and concentrations, none
of these mappings change the topology of concentration phase plots as they map
a phase plot determined by one set of initial conditions and rate constants into
that determined by transformed initial conditions and rate constants. Metrical
properties of the concentration maps generally depend upon the accuracy with
which the group generators are approximated: systematic methods for their
improvement are sketched.

0 J.C. Baltzer AG, Scientific Publishing Company
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1. Introduction

This paper is devoted to the assessment of key chemical and mathematical
properties of the transformations determined in the preceding paper [1], hereafter
referred to as I. To this end, we begin by considering kinetic systems with two
constituents, present in concentrations x, and x2. Using the same notation for rate
constants used in I, we will thus begin with transformations of the equations

dx1 /dt = kI1 + ki1 x, + k12 x 2 + k1IIxx, + k,12 x1 x 2 + k122 x 2x 2 (1.1)
dx2/d t :k20 + k2 1  + k22 x 2 + k211x X 1  + k212 X1 x 2 + k 22 x 2 x 2

Section 2 applies a particular transformation of I to an exactly solvable pair
of nonlinear kinetic equations with unstable solutions - a kinetic scheme used by
Frank [2] as a model demonstrating the possibility of spontaneously developing
optical activity in an initially achiral solution. Section 3 uses this same transformation
to exactly linearize Frank's nonlinear rate equations and thereby leads to an indirect
solution of them. Section 4 then considers a variety of transformations of these same
rate equations and demonstrates that all the T(a) of I act on Frank's equations to give
transformed equations which possess unstable solutions.

Section 5 illustrates the application of the transformations of I to a kinetic
system in which the linearizing transformation is not exact because the dependence
of the group generator upon species concentrations has only been approximately
determined. Unlike the usual methods of linearization which are accurate to O(x 2 ),
the linearization is accurate to O(x 3 ). Section 6 is concerned with topological
properties of the mappings in concentration space carried out by the transformations
T(a) of I. Two systems are defined to have qualitatively similar kinetics if their phase
trajectories are topologically equivalent. It is shown that all the T(a) of I convert
phase curves into topologically equivalent phase curves. With this fact in hand,in
section 7 it is shown how one may use the T(a) to determine lumped concentration
variables whose evolution is qualitatively similar to that of selected species of interest,
yet governed by much simpler kinetic schemes. The T(a) are also used to determine
finite transformations of input/output fluxes that compensate for large changes in
rate constants due to, for example, large temperature changes. - -

In section 8, the group generators established in I are used to determine functions
of the rate constants that are left invariant by the transformations T(a). This gives
a global characterization of the mappings x - Y = T(a)x, k -* k T(a)k, all of
which make large changes in phase curves while leaving the topology of the phase
curves unchanged. Section 9 determines the many-parameter groups whose trans-
formations leave invariant the topology of the phase curves of a two-species system.
Section 10 sets forth a method for improving the approximation to the transformed
concentrations " - T(a)x one obtains when the generator U of T(a) is approximate.

I 1
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Section 11 ett fnrth an algorithm for improving the approximate generators used
throughout the paper.

The final section, section 12, uummnarizes the results of this paper and I, and
indicates directions for further investigation.

2. Solution of a set of nonlinear kinetic equations by transformation

To illustrate our transformation procedure, we use operators determined in
I to change the value of the coefficients of the quadratic terms in the equations

dx,/dt -pxi + qxx2 = k,, x, + k112x, X2
(2.1)1

dx2 /dt - px, + qxl x2 = k22 x2 + k212 x1 x2.

Frank, and later Hochstim, used these equations with p > 0, q < 0 to model the
chemical kinetics of a process in which an initially racenic mixture of two optical
isomers with concentrations x (), x2 () can spontaneously become optically I
active [2,31. Although our purpose here is not a study of optical activity, reference
to this interpretation will aid in understanding the transformations being used.

Perusing table 2.2 in 1, we see that TH1 (ba)will change k22 to k212 + 6ak11 ,
and that T222(6a) wiM change k112 to k 112 +bak 1 . However, U112 and U212 do not
commute; when a is finite, applying T212 (a) to eqs. (2.1) aeter T, 12 (a) gives a different
result than applying T1 12 (a) after T212 (a). Neither sequence treats the two differential 3
equations in the same manner. This leads us to use the generator U = U112 + U212

in the operator T(a) = expaU to change k112 and k212 . Using table 2.2 of I to evaluate
the action of exp(6aU) = 1 + 6a(U,2 + U212) on x and k, we find that all kim
which vanish in (2.1) do not have their value changed, so we may drop many terms
from U112 + U2 12 , specializing the generator to

U = x1 x2 a/axI + x1 x2 a/ax2 + k22 a/ak,.2 + kil a/ak 212 . (2.2) I
Evaluating [V, U], one finds that this Lie generator exactly commutes with the
evolution operator V for (2.1). If a is the group parameter in the transformation, one
obtains for the transformed equations:

dXi,/dt -pil + (q + ap)XI Y2

(2.3a)
dy2[dt = PY2 + (q + AP)A 12 .

In producing this result, we have considered the concentrations x, to simply take on
new values Xj. On the other hand, we have explicitly indicated that = q + ap. This

I1 --
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highlights the effect of the transformation in changing the kinetic equation by chang-
ing rate. constants. However, the explicit effect of the transformation on the species
concentrations is also of importance. One finds by integrating equations (2.13) of I
that exp(aU) acts on x to give, when x, * X2 :

X x(XI - X2 )X1 = 
'X1 -X2 eXP(aD) '(23b)

Y- X2 (XI - X2)exp(aD)
x2=x, - x2 exp(aD)

with

X1 X eXPaD)(2.3c)

D x, - X2= Y1- i 2

Note that for a given range of x, and X2 , we have limited the range available to the
parameter a so as to ensure that the finite transformation is 1:1I within the space ofIreal x,x 2 i.ethat - -< X1 , X2 < .

If X1 X2 , ,then one obtains

1-X 1  X23d

It is not necessary to solve eqs. (2.3) above for the x to obtain the inverse trans-
formation: because of the group property, the results will be the same as that obtained
simply by changing a to -a and interchanging the barred and unbarred variables.
Thus, ifx, *X 2 :

___it(Y1____2 X 2 (XI- C)x( 2.e

Y1 -- 2 exp(-aD) ' X-1 - i 2 exp(-aD) (.e

If X1 2 , teinverse transformation is

3. Linearization of the kinetics generating spontaneous optical activity

Returning to (23ae), we note that if one sets a = -q/p the coefficient of the
quadratic terms in (2.3a) vanishes. This observation enables us to rather easily obtain
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solutions of the original kinetic equations (2.1) in terms of elementary functions,
for one may immediately integrate the linear equations obtained when the coefficient
of the quadratic terms in (23a) vanishes. The result is

91 = Y(O)exp(p), x 2 = Y2(O)exp(pt). (3.1)

(Note that Y1, x2 remain finite for all finite times so that the denominators in (2.3e)
can only vanish as t approaches infinity.) Then, using the inverse transformations,
one transforms the linearized equations back to the original nonlinear equations and
thereby transforms (3.1) into their exact solution which, if x, (to) * x2 (to), is found
to be

C, (C - C2)exp(pt)
C, - C2exp([q/p] [C - C2] exp[pt)

= C2(C - C2)exp(pt)exp([q/pJ [C - C2] exp [pt]) (3.2a)

C, - C2 exp([q/p] [C - C2] exp [pt])

where Ci = Yi(O). If x1(to) = x2(to), then (23c) implies C1 = C2 = C, and the solu-
tions of(2.1) are given by

X1(W) X2 W = Cexp(pt) (3.2b)xl~t = 2(t = I - (q/p)Cexp(pt)"

These solutions agree with those obtained analytically by Frank using standard
methods [2].

Note that the values of x, and x2 at t = 0 are

C ,(C -C2) I
CX - C2 exp([q/p] [C - C2]) (3.2c)

CX(C, - C2)exp([q/p] [Cl - C2])
C - C2 exp([q/pJ [C - C2])

when x, (0) *- x2 (0). When the initial concentrations are equal, one has - 3
C

x,(0) f x2 (O) = - (q/p)C (3.2d)

Equations (2.1) have equilibrium (i.e. critical) points at (0, 0) and (-p/q, -p/q).
As (xI, x2 ) approaches the unstable equilibrium point at (-p/q, -p/q), the denomi-

I
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nators in (3.2b) approach zero and x, and x2 become infinite. Note, however, that it
is impossible for any of the solutions to reach these equilibrium values from any other
concentrations in any finite time.

It follows immediately from (2 3c) that if, when we start our clock (t = 0),
the concentrations C1 and C2 of x, and x 2 are small but not identical, then

X1(t) - x2 (W = (C - C2)exp(pt). (3.3)

Thus, if any fluctuation in the concentrations of the D and L isomers leads to a
momentary difference in these concentrations, this difference may grow exponentially
with time. As Frank [2) first pointed out, because such fluctuations are to be expected
on statistical grounds, a reaction system with kinetic equations (2.1), though started
off with equal concentrations of D and L isomers, can lead to a preponderance of one
isomer over the other. As will be seen in the following section, the methods we have
developed enable one to systematically determine all other two-species elementary
kinetic schemes which lead to the same result. However, we do not here provide
methods for making a corresponding examination of systems where local concentra-
tion fluctuations and diffusion are involved. The interested reader is referred to
the paper by Hochstim [3], who incorporated diffusion in the kinetics (2.1) and
investigated the fluctuation dynamics of the system, as is necessary in any realistic
theory of th' spontaneous generation tf optical activity by chemical means.

4. Distortions of kinetics generating spontaneous optical activity

The chemically significant feature of the kinetics in the previous two sections
is the instability of solutions in which the concentrations of D and L isomers are
equal: if these concentrations momentarily become unequal at time to, then there-
after

Xi(t) - X 2(t) = IX I (tO) - x2 (to)Iexp(t - to)p. (4.1)

It is instructive to see what the invariance transformations do to the kinetic equa-
tions (2.1) and to the time evolution of this difference. To avoid confusion with
the transformation of the previous section, we shall in this section write

X = T(a)k, k = T(-a)c, i = T(a)x, x - T(-a)F. (*.2)

We first consider the exact invariance transformations T1o, T11, T12 . Letting
x = Tio(-a)F = (xI - a,x 2 ), we find using table 2.2 ofl that

kjo = -ak 11, k12 = -akJ1 2, k22 = k22 - ak212 , (4.3a)

3 while all other k's are unchanged. Also,
I

| ---- --- r

iUIII
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l - - (CI - C2) exp (pt) + a. (4.3b)!

Thus, T1o(-a) converts the Frank equations into

x =-ap+p -aq02 + q1 2 , 2 ( -aq)3i2 + q'l 2 . (4.4)

It is evident from (43b) that these new equations also possess unstable solutions
in the same sense as do eqp. (3.1).

Next, let (xk) Tl (-a)(Ik). Using table 2.2 of 1, one finds

Fr ,1 x, e", 2 x2  (4.5)

and

FI P i +q .A2 , X2 P-- p + e-"q -2 f

Thus, for these equations one has

x1 -x 2 = (Cl exp(a) - C2)exp(pt). (4.6)

Applying T 12 (-a), one obtains

xl - i2 = X - x2 -ax2 . (4.7) 3
which grows exponentially as t becomes large. The transformed kinetic equations
are

XI = piI + q(I + Oil - - q(a + a )] 2 X = p 2 + , i2 - aq .2(4.8)

We turn next to the action of transformations that only leave the kinetic 5
equations approximately invariant.

Using table 2.2 of I to determine the action of T1, (-a), one finds:

l ax, (4.9) 3
S- = 11- aCxp(p) - C2 exp(pt)

and that

k l ak1  ap . (4.10)

II
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The corresponding differential equations are

= =pX' + ap7X +q1 F2 + o(x 3 )
(4.11)

X2 2 PX2 +qX1 R2 (x)

T 12 (-0) gives

Y= X1 e"' 52 - X2
(4.12)

- 3i = {C exp(aC2 exp(pt)) - C2 exp(pt)

and

k112 = k112 + ak22 = q + ap. (4.13)

The transformed differential equations are

x, = px, + (q + ap)7Ci 2 + O(x 3 ) (4.14) -.

z= P2 + q 1 x2 + O(x 3 )

Finally, T122 (-a) yields the transformed solutions

- axe, 2  2 122 = a(2k 22 - k1j) = ap, (4.15)

so that

x1 - = (C1 - 2 )exp(.pt) +C2 exp(2pt) (4.16)

depicts the tine evolution of concentration differences for the resulting solutions
of the equation

X1  pX, +q. x + ap + 0(x3)
(4.17),

X2 = PX2 +qij R2 + O(x3)

It will be noted that although these various transformations lead to equations "
with little self-evident relationship to the Frank equations, all the solutions have the
property that they develop exponential growth of the difference between concen-
trations. By acting successively with the twelve different transformations of table 2.2
of I, one obtains from the Frank equatiohs a twelve-parameter family of kinetic
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equations, all of which possess similarly unstable solutions. In sections 6 and 7, we
will establish the exact sense in which this property of our transformations is a general
one.

5. Transformations of Lotka-Volterra systems I
The example of sctions 2 and 3 is somewhat misleading because the kinetic

system possesses no sepuatrix in the phase plane and because we were able to use
an exact invariance transformation to linearize the rate equations. In this section, we
investigate the more typical example provided by the rate equations of Lotka and
Volterra [4,5]. They can always be reduced to the special case [6]

il = p(x1 - x1 x2 ), i 2 =-q(x2 - x1 x2 ), (5.1)

which has critical points at (0,0) and (1,1). If one rewrites these about the second
singular point by making the substitution

x "2Y + 1, x2 y2 +1,

then they become -

J = P(-Y2 - Y1Y2), Y'2 = -q(-yl - YjY2). (5.2)

In this section we will, for simplicity, consider p = q = 1.
As we wish to allow the kim to vary, we consider (5.1) to be a special case

of the equations

= 1 = k1l x, + k 112 X 1 X2, x 2 = k 22 x 2 + k 2 12 X1 x 2 , (5.3)

with kil = l,k 112 = -1,k 22 
= -1, k212 = 1.

Similarly, (5.2) is a special case of the equations

=V = k12 y 2 + k, 12 y 1 Y2 - : = k2l y + k 2 12 Y 1 Y 2 , (5.4)

with k 12 = -1 = k112 , k 21 = I = k 1 2 .12

Comparing eqs. (5.3) with eqs. (2.1), we find that the generator U of (2.2) is
the generator of a transformation that will linearize (5.3). However, in this case the
equations are only approximately invariant under the transformation: Evaluating
[V. U] , one obtains as the remainder a W (2) term with components

(w1,W2) =(-2x~x2 ,2xix2). (5.5)

I I I I I i Ii
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This remainder is of higher order in x than that obtained in the standard local linear-
ization which simply neglects terms of O(x 2 ).

We shall henceforth use the term regional to denote an approximation, such as
this linearization, whose error terms are of order x3 or greater.

Equations (5.4) may be linearized in a manner similar to that used for
eqs. (5.3). Using table 2.2 of I, one finds that to linearize (5.4) it is necessary to make
use of all the generators quadratic in x. Utilizing the infinitesimal transformations
as before, one finds that a transformation with generator

U111 + U122 - U122 - U211 + U212 + U222  (5.6)

will have the desired effect. Because many of the k's that are zero do not have their
values altered by the Tqk , the generator (5.6) may be simplified to

U = (yl + y, y2 - y)aay + (y + y, y2 - y)a/ay2

(5.7)
+ (k,2 - 2k 21 )a ak 12 + (k 21 - 2kl2)a/ak 2 2

Evaluating [ V, U] , one finds that in the remainder

W - kl12 Yl + k2 12 Y? Y2 - (k 1 2 + 2k 212 )YI Y + k 12 y
(5.8)

= k2 2y 3 - (2ks2 + k21 2)Y Y2 + ky 2 Yy2 y3

Acting with exp(aU) on the equations, they are, respectively, converted into

,= k1l x, + (k, 12 + ak 22)T 1 i2 + O(x3 )
(5.9)

TC = k22 x 2 + (k212 + ak1 )11 3 2 + O(x 3 )

and

Yj = k12 Y2 + (k,12 - 3ak2l)Y Y2 + O(y 3 )
(5.10)

Y2 = k2 jY1 + (k212 - 3akI2 )yYIY 2 + O(y 3 ). .

The effect of the error terms will be discussed in sections 10 and 11.
Setting a = -1 in (5.9) and a = -1/3 in (5.10), one obtains linear equations

whose solutions are, respectively,

il = C exp(t), Y2 = C2 exp(-t) (5.11)
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and

Y = C1 cOS(t) - C2 in(t)
Y2 = C2 cos(t) + C Si(). (

Using the inverse transformations developed in section 2, one converts (5.11) into
approximate solutions of the Lotka-Volterra equations. One finds, as before,

X, (t) = 91 (YI - 12 )  I

il - 12 exp{-a(Yl - i2))'

or if x, = x2 ,
I +a l "

(5.13)I

X2 (t) = 12(Il - 2)expj-a(Yl - Y2)) "

TC - 2 exp -a(Tr - ,)2 ',

or if x, = x2 , 2I + a2

where Yj and x 2 are given by (5.11) in the vicinity of the origin. The range of a must
be restricted to ensure that the transformations are 1 : 1 on the reals.

In the vicinity of (1,1), one uses the transformation with generator U given
in (5.7) to obtain the transformed variables. We may take advantage of the fact that
the commutator of any two of the generators composing this U either vanishes
or is of order y 3 . As a result, to order y3 we may write exp(aU) as a product
exp(aU11 )exp(aUl 2)... exp(aU 2). Proceeding in such a manner, we find

YY +a5
I + a(3 + Y2 ) +a(y1 y)

(5.14)

I +a(y +y2)+(yi +2)'

with YI,Y2 given a functions of t by (5.12). Note that yi and y2 are single valued
functions of j , I2 and a for the allowed range of these variables. Hence, as Yl and
,2 are cyclic functions of t, yj and y2 must be cyclic in t. This has the consequence
that the closed curves which are the phase plane plots of y', ;2 are mapped into I
closed phase curves of yl , Y2.

• I I II
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72l

5"

Fig. 5.1. Global approximation to a phase trajectory of the
Lotka-volterra equation. Thc trajectory B of the Lotka-
Volterra equation is approximated by the trajectory A defined
by (5.14). C is the reference circle defined by (5.12).

Because the U of (5.7) is only approximate, eqs. (5.14) do not yield exact
solutions of the rate equations when a is assigned the prescribed value of -1/3. In
fig. 5.1, an approximate phase trajectory (A) determined by (5.14) and (5.12) is
compared with the trajectory (B) obtained by numerical integration of the Lotka-
Volterra equations. The corresponding trajectory of the linearized equations is plotted
in the figure as (C). In obtaining these trajectories, the initial point p was used to
determine p' on the reference circle defined by (5.12). In section 10, a method is •
developed for improving the approximate trajectory in the region of any point of
interest.

6. Transfonuation of phase trajectories: Topological invariants

A key feature of any kinetic system is the behaviour of its phase portrait [6-8].
(We shall use the term phase portrait when we are referring to trajectories in the
vicinity of singular points in the phase space JX}.) As a result, it is important to
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investigate the way in which these portraits are affected by the transfirmrations we
have obtained. To introduce this study, we carry out a standard investigatLn of the
phase portraits of (1.1). When q : 0, the right-hand sides of the equations vanish
for x1 

= X2 = 0, and for x 1 = -p/q, x 2 ' X20 = -p/q. Only the first critical
point persists if q = 0. In the region of the critical point at the origin, the solutions
of the equati.ns are

x1 (t) = xl(O)exp(pt), x2 (t) = x 2(0)exp(pt) (6.1)

and the phase portrait consists of trajectones fleeirg the origin, an improper node, I
(Of course, on interpreting x, and x2 as species -oncentrations, one sees that the
trajectories on which either of these variables bectme negative have no direct chemical
relevance.) The invariance transformations of section 2 merely distort these trajectories
as t.ey recede from the origin, but none of the transformatinns changes the topol-%.cal
classification of the portrait.

We next turn to an investigation of the phase portraits in the region of the "
second critical point at (-p/q, -p/q). Letting y = x - (-p/q, -p/q) and exp:essing
the equations about this second critical point yields

dyl/d t -PY 2 
+ qY1Y2, dy 2,1t = -PY 1 + qY1 Y2  (6.2)

The secular equation of the linear part of this system is I

Det = ) =  = -p2. (6.3)

It will be noted that the roots are independent of q. Since these roots determine
the phase portrait, it is evident that the portrait is independent of q whenever y is I
well defined, i.e. for q * 0. The portrait is that of a saddle point. Applying the trans-
formatirns of table 22 of I to y, and y2, one finds, as in the previous case, that the
topological classification of the portrait is unchanged.

The Lotka-Volterra system of section 5 has an u table saddle point at the
origin, and a stable center at (1, 1). Thus, the portra,. in the region of the first critical
poir. and that in the region of the second critical point are of radically different
topological type. (Although only the latter is of direct chemi..al interest, we shall
for illustrative purposes consider them both.) Applying the transformations of table 2.2
of I to the variables x in eqs. (5.1) and the varibles y in eqs. (5.2), one finds that
neither phase portrait may be changed into the other or into a portrait of a different
topological classification.

Itis a difficult task to determine all possible phase portraits for just two elementary
kinetic equations. One must first locate all stationary points dxl/dt = 0 = dx2/dt.

I
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This is equivalent to investigating and classifying all possible intersections of the
pair of conics defined by setting the tight-hand sides of (1.1) to zero, which if they
are not identical, may intersect at 4,3,2, 1 or no points. To then investigate the
action of all the transformations in table 2.2 of I on each phase portrait is a tasK
one would like to avoid. In the foUowipz paragr phs, we determine the effects of
the transformations on the topological properties of all possible phase portraits with-
out proceeding on s cast by case basis, and without confining the syst-r to a phase
space of two dimensions.

I, e examples of this and previous sections, we have seen transformations
of kinetic equations that have preserved qualitative features of the solutions of the
equations even though they may have greatly changed the concentrations and rate
constants, and hence the equations themselves. All transformations of the equations
introduced by Frank were found to preserve the instability of the solutions with
equal concentrations of D and L isomers portrayed in the phase portrait of the un-
transformed system. All transformations of the cyclic solutions cf "h', LV-tka-Volterra
equations in the region of their critical point pp vi rise to cyclic solutions, and all
transformations of the non-cyclic solutions i. the region of their critical point yielded
non-cyclic solutions. N~ne of the transfrmations in the examples altered the topo- ,

logical classification of a critical pozIt.
Let us therefore address the question of whether it is true in general that

our invariance transformations change phase trajectories in such a manner as to
preserve the topological properties of the trajectories everywhere in the phase space.

First of all we ask whether the operators exp(aU) always t:ansform closed
phase curves into closed phase curves, and open phase curves into open phase curves?
The answer to this question is yes, for the following reasons. The polynomial form
of the coefficient functions in the generators U ensures that the coefficients hi(x)
are single valued differentiable, indeed analytic, functions, and this is true even when
the polynomials are only approximations to the exact hi. Now, at eac- -9int in the
phase space the infinitesimal shift in x, k brought .oout by an infin "'-simal trans-
formation with parameter 6a is given by 6a Ux, 6a Uk. Thus, at each point in phase
oace (-ac < x1 < for all t), our infinitesimal transformations define a unique

shift of the point, that is to say, they are local diffeomorphisms. We have not allowed
finite transformations that shift xi outside this same range. Since the finite trans-
fo~mations T(a) are compounded of a succession of mfinitesima transformations
T(6a) such that a = j 6a, for each value of a they also determine unique motions of
each point in x,k, t space as long as x,k, t remain real. Thus, first of all, for all a
within the allowed range, the transformations carried out by the operators exp(aU), ,
in addition to bein6 unique and having a unique inverse, vary smoothly from point
to point and carry contiguous regions in x, k, t space into contiguous regions, and
discontiguous regions into discontiguous regions - that it to say, they are local
diffeomorphisms of the space of x, k, t [7]. Second, because we do not allow values

____I" !-
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of the group parameter which would transform any variable outside the reals, the
transformations are global diffeomorphisms of the space of real x,k, t. In addition,
the transformations are time independent so that they are diffeomorphisms of x, k
space. Finally, the transformations are such that as x varies with t, k does not vary. I
It follows from this that as t progresses and a phase trajectory and its transformed
image develop (a being held fixed), if it should happen that the phase point returns
to its initial position, then its transformed image will also return to its corresponding
initial position. Thus, a closed phase curve is mapped into a closed phase curve. In a
similar way, one argues that because the transformations are t-independent diffeo-
morphisms of x, k, t space, they carry discontiguous regions of phase space into I
discontiguous regions, and hence transform open phase curves into open phase curves.

It is evident from this discussion that our transformations allow us to deter-
mine changes in rate constants that will leave an initially oscillatory reaction oscillatory
and an initially non-oscillatory reaction non-oscillatory. Any transformation com-
pounded of transformations exp(aU'), each of whose generators are of the form

U'= 7 cm (k)Um , (6.4)

will have this property when acting on the xi if the Um are those determined in
section 2, and the cm are smooth functions of k.

In the usual topological classification of phase portraits and phase curves,
the direction of motion as t increases is also a topological invariant. Hence, we next
investigate whether any of our changes in rate constants invert the direction of motion
along a phase curve.

Inspecting table 2.2 of I, one finds that none of its transformations can have
such an effect. The underlying reason for this is perhaps most clearly seen with the
aid of fig. 6.1, which purports to depict a solution curve in x1 , x 2, t space and its
projections onto x 1 , x2 phase space, together with another curve in this phase space.
Suppose that at times ti and t 2 the points P1 and P2 are marked on a trajectory
of growing concentrations. Suppose that for a given value a' of the group parameter
it were to happen that exp(aU) were to map P, into P - and that for the same
value of the group parameter, P2 is carried into P2, a point where 3 and i2 have
smaller values than at P . The arrows are drawn in to indicate how, as one increases
the group parameter from 0 to a', the transformed points move away from the original -,
trajectory. It will be noted that these lines cross at some intermediate value of a.
However, if this were to happen, then for larger values of a the transformation would
have to carry the point of crossing into both Pl and P2 - and the inverse transforma-
tion would have to carry the point to both P and P2 . Because our generators U
have single valued functions for their coefficients, the infinitesimal transformations
are everywhere unique and all this is impossible. In short, it is impossible to convert
the first phase trajectory into the second using any of our T(a).

I '
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T

(XT) I(XT)

An Impossible rbpping

Fig. 6.1. An impossible mapping. Two curves x(t) can not be
mapped into one another by any of the transformations considered
in this paper if one depicts conceritrations that increase with time
and the other depicts concentrations that decrease with time at
the same time.

The argument just given evidently fails if the phase space is more than two
dimensional, for then the lines P P; and P2 P2 need not intersect. In such cases,
we may consider an initial phase trajectory which develops in one direction as t
increases, and a nearby phase trajectory obtained from the first by a transformation
with operator T(a) - a trajectory which by hypothesis evolves in the opposite direction.
If two such curves exist we can, from arguments of continuity in the group para-
meter a, conclude that between them lie two similar curves that are connected by
an infinitesimal transformation T(6a) and that between these two curves lies a curve
along which points do not move with t. Thus, along this intermediate curve all i
vanish. We now prove that in the region of this intermediate curve, T cannot change
any of the rates ii. The effect upon xi of the infinitesimal transformation with
generator U is to convert x, -to ii 2 xi + 6a hi(x). This induces a transformation
of dx1/dr to

dil/dt = i x+ 6ahi(x)) = * 6a7-i8h1 /8x1 . (6.5)
dt

As *i and all the other ii vanish on the intermediate curve,we see that in its infinitesimal
neighbourhood T cannot change any of the i's and so cannot change the direction
of motion along any trajectory. It follows from continuity in the group parameter a
that T is unable to transform any trajectory into a trajectory developing oppositely
in time.
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The observations so far made in this section may be subsumed in the general
observation that because our transformations are, for each allowed value of the group
parameter a, diffeomorphisms of the space of x, k that keep dk/dt zero, they trans-
form phase trajectories into topologically equivalent phase trajectories [7].

It is important to note that because even our approximate invariance trans- I
formations are local and global diffeomorphisms, all the above statements hold true
even for them. Of course, when one uses approximate invariance transformations,
one converts exact solutions into approximate solutions and hence, usually, converts
exact phase trajectories of one kinetic system into approximate phase trajectories
of another. Nevertheless, increasing the accuracy of the approximation by increasing
the number of terms in the power series approximation to the hi(x) will not alter I
the topology of the target curve, which is completely determined by the topology
of the untransformed solution curve. Thus, for all the transformations we allow, the
evolution of the original system and the evolution of the transformed systems are
qualitatively similar in a well-defined sense: their phase curves are topologically
indistinguishable. The topology of the phase curves is, in the standard sense which
includes the direction of motion, an invariant of our transformations. I

To sum up our observations to this point: the methodology and conceptions
we have described enable one to establish well-defined qualitative relations, as well
as quantitative relations, between the behaviour of kinetic systems with different N1
rate constants. Because one may transform many rate constants to zero, the con-
ceptions are also applicable to studies relating the global behaviour of systems with
complex kinetics to the behaviour of systems with simpler kinetics - and vice versa.

7. Lumping and flux control

Both in the analysis and in the utilization of kinetic studies of complex
reacting systems, one often tries to simplify the kinetic scheme by 'lumping' a number
of reactions into one, thus submerging a part of the detailed elementary kinetics. I
For this goal, it is necessary that the reactions retained in the kinetic scheme proceed
at least qualitatively, as they would if the submerged reactions were taken into account.
Because we are assured that our transformations do not change the qualitative
behaviour of a kinetic system, it is worthwhile to determine whether they can be
used to determine lumpinp. Sometimes a lumping is only possible because the initial
concentrations satisfy some special relationship, and sometimes it is only possible I
because some kinetic coefficients are confined to some special range of values. While
the methods developed in this article can be of help in studying both these situations,
here we wish only to deal with the use of the methods in the global analysis of kinetic
systems. That is to say, we are here concerned only with the consequences of large
changes in kinetic coefficients and with consequences that are independent of initial
concentrations.

I
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To exemplify our approach to lumping, we begin by considering the inverse
process, that of sophisticating one member of a set of rate equations - an equation
that happens to involve only one species. Consider the general elementary kinetic
scheme involving only one species:

i1 =go10 + 111 x + gillx . (7.1)

We may suppose that while this reaction is proceeding, another reaction involving
x 2 is also proceeding independently. Now the concentration x, necessarily evolves
in a non-oscillatory manner. Acting on (7.1) with any of the twelve transformations
T(a) of table 2.2 of ! will give a one-parameter family of two-component kinetic
systems in which ! 's evolution is also non-oscillatory. Acting with each of the twelve
transformations in succession will give a twelve-parameter family of such kinetic
systems.

The lumped variable 3e resulting from these transformations will in general
be a complicated function of x, and the other concentrations, but as the group
parameters become smaller and smaller, it will come closer and closer to being x,.
Even though xl makes large excursions and the kinetic coefficients may be greatly
altered, the evolution of il for all members of this twelve-parameter family of
reactions is globally, i.e. topologically, equivalent to that of the lumped system (7.1).
All this is to say that xl will behave qualitatively as though it were xi.

Consider now the process involved in eliminating a concentration variable
from a kinetic equation using transformations x1 , x 2 - l, x2 . It might appear
at first sight that with a twelve-parameter family of lumping transformations available,
one could lump away just about any variable in a reaction without changing the
topology of the phase trajectories. In this connection, an example involving the
lumping of three species into two may be revealing. Consider the reactions

ki

A+A = B
k-,

(7.2)
k2

B+B = C
k_2

and suppose that A is being supplied at rate ko while C is being supplied at rate k3 .
Let us try to transform away the intermediate species in the final reaction. Assigning
the index i antilexically, the associa .1 kinetic equations are

-3 = ko + 2k. 1 x 2 - k x 3 x 3 = ko + k32 x 2 + k 333 x 3 x 3

;2 = -k-_I x 2 - 2k- 2 x, + k x3x 3 - 2k2 x 2 X2

= k 22 X7 4 k 2 XI, + k 2 33 x 3 X3 + k222 x 2 x 2  (7.3)

-i = k3 - k_ 2 XI + k 2 x 2 x 2 = klo + k,1 x, + k122 X2 x 2I

/
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We wish to carry out a transformation x -o Y, k - k which will eliminate 72 from
the last reaction. Perusing table 2.1 of I and taking into account the fact that a number
of k's vanish in the intermediate and final reactions, we see that U12 is the only
generator available for this purpose. Table 2.2 then indicates that

k22 , k12 + ak=, "112 , a(k22 - knl) - a2 k2l • (7A4)

Thus, on setting a =-kr,2/k= = k2 /-k 2 = -1 we can transform k12 to zero
- but we will also, in general, create a nonzero k12. Again perusing table 2.1 of I,
we find that we can not find another transformation that will eliminate the unwanted
kn. It follows that we can only attain our desired end if it should happen that the
value of a which makes k122 vanish also makes k1 2 vanish. This will happen only if

(kl2/k222)k2l + k22 - kil : -(k-2 + k 1 ) = 0. (7.5)

As untransformed rate constants can not be negative, it is evident (7.5) can only be
satisfied if we can replace the k's by some negative k's by means of some further I
transformation. Perusing tables 2.1 and 22 of I, one finds that a candidate for such
a transformation is provided by TI I(b). It acts on k, to give k 1 + 2bklo so that
the term in (7.5) which must vanish becomes -(k- 2 + k-_1 + 2bk3). Thus, by setting
b = -(k- + k- )12k3, the lumping becomes possible. The only other effect of
T111(b) on the final reaction is to convert x, to x1l(l + bxl). Avplying Till after
T12 , the lumped concentration variable will be 11 = (xI + ax=2 ) + b txl + ax2 I)
The other concentrations x 2 and x 3 are unaffected. The kinetics oi the final reaction
will become

=l klo + kll il + kill YlY
(7.6)

!, k + 2bklo + a- 21, k = Ikl I- a2k12 + bk2  I

Lumped concentration variables are also of use in another setting, in which
one wishes the lumped variables to behave qualitatively like the original concentra-
tions. It is a common experience that heat produced in the course of a chemical
reaction may affect reaction rates (and, as a result, product composition) by changing 1
unimolecular rate constants ki and bimolecular rate constants kik. One commonly I
controls such reactions by adjusting cooling rates and by adjusting concentrations
and rates of supply of reagents. For reactions involving two species, the extent to
which time-independent reaction fluxes and concentration changes may be so used
can be determined with the aid of table 2.1 of I. Perusing the table, one sees that
only the generators Uo and U,1 have nonzero values of gio and g20 . Thus, only
transformations using them can adjust the fluxes klo and k20. The most general I
allowed generator available for such purposes is a linear combination of these six

generators of the form

I
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UX cm(k)U,,M . (7.7)

Using table 2.1 of I one finds that an infinitesimal transformation with this generator
has the following effect on the flux klo and the rate constants k,,:

6k1o = ba1-c, ok, + clklo + c12ko -co k12 1

6 = 6al-2clokil + C2 k24 - C2o k112 - c21 k12)

8 k12 = ba I-clo k112 + cl k1,2 + C12 (k22 - ki1 )- 2c2o k12 2 - c k12 ) (7.8)

5ki I Sa{-c 11 k1 I+ c1 2 k,. - c k12

6k,12 = Sa{cl 2(k212 - 2kI11 ) - 2C21 k112 - c2 kll2

6kl22 ,. S c1 k122 + c,2 (k222 - k112) - 2c22 k 22

The associated changes in concentrations are

6x 1 = 6a{c 10 + c11x + c12x2
(7.9)

6x2 = &a C20 + C21 xI + c 2 x2. .

A similar set of relations can be written for the flux k20 and rate constants k,. To
negate the effects of infinitesimal temperature-driven changes in the ten unimolecular
and bimolecular rate constants, we may try to choose the six constants clu and c2 .

so that all 6k's except 8klo and 6ko vanish. If such c's can be found, then they will
determine associated shifts in fluxes 6ko and 6ko and concentrations 6xi and

6X2. Under these circumstances, the transformed kinetic equations will read

11= klo + k, 1 1 + k12i Y2 + k 1 1 91 + k,12 1 2 , + k122 Y2 X2
(7.10)

2 -k. k, Y + k22 Y2  k,,1 Y Yi + k212 Y + k222 Y2  2 .

Here, the k's without overbars have the value taken on at the original ambient tem-
perature, the change in the actual temperature-dependent k's having been absorbed
in the indicated changes in x1 , x2, kIo, ko indicated by overbars. When the Yj are
expressed in terms of the untransformed variables, the Yg are seen to be lumped
concentration variables if c12 , c21, respectively, are nonzero. Otherwise, 3I, i 2 are
simply altered values of x1, x2 .

Clearly, all this will only be possible in special cases - cases which may be
determined using this linear analysis. When the 'Linear analysis using infinitesimal

aimni•mm i i lNDnl l
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transformations establishes that compensation is possible, the corresponding finite
transformations may be used to determine the shifts iA, fluxes and concentrations
required to compensate for finite temperature-driven shifts in rate constants.

When this is possible, eqs. (7.10) state that the reaction with altered fluxes
and concentration variables will proceed with the same unimolecular and bimolecular
rate constants as did the original reaction at ambient temperature. If C12 and c21 are
zero, one will have been able to accomplish this simply by changing fluxes and real
world concentrations.

We also call attention to the fact that in the general case the determination
of lumpings that will eliminate intermediates from consideration also begins with I
the determination of an appropriate infinitesimal transformation by specifying an
appropriate linear combination of base generators. Once this has been determined
- by solving a set of linear equations - one can determine the corresponding finite
transformations. In proceeding from the infinitesimal to the finite transformations
in these lumping analyses that fix a generator U, one may directly use the operator
exp(aU) or a succession of different T's, each involving one of the base generators -
in U and a particular choice of parameter that may be determined with the aid of

table 2.2 of I or an extension of it that deals with a larger number of variables xi
and k.

8. Invariant functions of kinetic coefficients U
As the parameter a varies, the operators exp(aU) change the values of the

kinetic coefficients k and the representative points in k space move along a definite
path, as indicated in fig. 8.1 for a three-dimensional k space. The functional form
of these paths is most usefully characterized by stating the functions F(k) that are
left invariant as the point moves along the path. Setting each F(k) equal to a constant
defines a surface in the space of kinetic coefficients, and the intersection of all these
surfaces defines a line in this space - a path specified by the transformation. The
constant value to be assigned to each F(k) is determined by the initial values of the
k's. In the figure, it is supposed that both curves are determined by the same two
generators U so that only the differing values of the constants C distinguishes them.

We now turn to the problem of determining the functions F. Let F(k) be a
function left invariant by the transformations exp(aU). Then, expanding the exponien-., 3
tial, one has

I1 + aU + (aU)212 + + F = F. (8.1)

The necessary and sufficient condition that this holds for all values of a is

UF = 0. (8.2)

I
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Fi.8..Inaiatsufce ndcrvsdeiedb ivrkn
funcion of ateconsant.3TefntosF n 1

cFiciens. Thesean surfaces ntuers ee in a inCaning

the values of the constants C changes the surfaces and
their intersection.

For a given U, this is a first-order partial differential equation for F. By the usual
theory of such equations, it is equivalent to a set of first-order ordinary differential
equations [9]

6k10  _ bk 20  -U6 222  (8.3)
g10  92g 222

Consider, for example, the case of the transformation with generator

Ul1l xi alax1 + klo a/ak10 + k12 3/ak1 2 - kill a/akil1

-k122~ a/ak 122 - k2, a/8k2, - 2k2l, a/ak211 - k2,12 a/ak 212

Here, the equations (8.3) have as solutions a basic set of invariant functions

klo/k,,,, kil, kil,.k,,,, k112, k,,,,/k,,,

(8.5)

Any function of these base functions is, of course, also an invariant function.
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The reader will note on inspecting table 2.2 of I that the invariant functions
(8.5) can also be constructed by eliminating the group parameter a from the finite
transformations. If it should happen that k12 were zero, one would avoid introducing I
ku by combining the transformed k's in a different manner than indicated in (8.5).

In table 8.1, we list a basis of independent functions F(k) left invariant by
each of the generators in table 2.1 of I. Any two sets of values of the kinetic co-
efficients that give the same values for one or more of these sets of functions will
yield reaction systems whose global behaviour is qualitatively the same in the sense
defined in section 7. A set of eleven such basis functions F(k) may be similarly
determined for any linear combination of generators one chooses.

As an example of the utilization of these functions, we consider the functions
determined by the translation operator T1o(-a)T2 0(-b) = T(-a, -b). This operator
acts on (xIx 2 ) to give (YI, X2) = (xI - a, x 2 - b). At the same time, it shifts a
number of rate constants k, to k4. T(-a, -b) thereby determines homeomorphisms
of x, k space that convert a given set of initial concentration values (x °, x ° ) (and I
running values (xi, x2)), and a given rate equation x = r(x,k) into a new set of
concentrations obeying a new set of rate equations. For each value of a, b, the new
initial concentrations (Y- , x--2) evolve along a phase trajectory ( 1 (t), i 2(t)) topo-
logically equivalent to that of the initial phase trajectory (x1(t),x 2(t)). Thus, by
acting on a system with initial concentrations evolving along a phase trajectory of
given topology, the transformation converts it into a two-parameter family of initial l
concentrations and phase trajectories of identical topology but belonging to different
rate equations. (Any of the values (x1 , x 2) on the initial trajectory can of course be
considered initial concentrations.) Inserting the initial values of the km into the func-
tions of table 8.1, one obtains initial values of the invariant functions. Setting the
corresponding functions of the k. equal to these initial values, one obtains the equa-
tions that determine the relations among the k. that must subsist to ensure that the
altered kinetic equations should have topologically identical trajectories originating
from the transformed concentrations.

9. Group properties

So far, we have not dealt with important questions concerning the totality of_
transformations in table 2.2 of I. For example, are the different one-parameter groups
of transformations in the table all subgroups of a single many-parameter group? Are
there other time-independent transformations with generators quadratic in x, which
will also leave the kinetic equations (2.1) invariant?

The first of these questions is also the logically prior one, because if the trans.
formations do not together comprise a group, it can be shown that they give rise to
further transformations which leave eqs. (1.1) invariant. Now, for the transformations
to be those of a many-parameter group it is necessary and sufficient that their
generators close under commutation:

I1 -
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[U,1  = c'k. (9.1)

In the previous paper 1, we established that the commutation relations of invariance
generators which leave the k subspace invariant are the same as the commutation
relations of the full generators which act in the space of k and x. (That is to say, the
structure constants ciC are the same in both instances.) Because we have chosen the
functions hi(x) to be independent of the k's, it is also true that the commutation
relations of that portion of the generators which acts on the x's - the h -V. - are also
the same as the commutation relations of the full generators. This enables us to use
lie's classification of all the transformation groups of the plane (here the plane of
X1 , X2 ) to determine all possible Lie groups obtainable from the generators in table 2.1
of 1. These are set forth in table 9. 1.

Table 9.1

U's that generate many-para.neter Lie groups

1. U10 0 U20,. Ulf. U121 U23, U2 1, U.11 *U21,, U 22 +Ul, (projective group of the plane [20))

11-. 0) U. U2. U U2. U2 UIP U. +2(1

0i ' 20'- ., U12' 11 ' U. ,221' III +f21

(ii) o U ,U 11U2 2 U,,, U1. Uf,+2U.
W)22 U.U..2, .. U.11222' 222+2 12

IV. 0i) U,.'U11 U7I,, LI1 2, U30, U22
00 LU201 LU22, LU211 Ut1, Ut0, Ulf~

V. 0i) LI.., U.2, U1,2, LI,., U2,,2(1, + LU...
(" 201 U2 U211, U0, Ul,, 2U22, + Ul A

VI. (') U11., U.01 lf, LU22, (.11 LI,,,
(ii) U20, UI,0, U22 Ul UI2 U122

Vill UJ,,U, U,, U1,,U,,,U, (general linear group of the plane [201)

Vill*. U 0, U20,- U1 2, U21, U. - U, (special linea goup of the plane 1201)

X. (j) Ut0, 2 , + ., U.,+ .LI,,

(bi) U20, 2U23 +U,&, U,22 .+Ulf

XI* (i) Ulf' U,, U122L,,

(ii) U20 I U23,, U,,2 (group of the line [20))

Nte: Many of the groups whose Senerajors are listed above contain subgroups
not listed, eci. in XI1I 0i), U', and &,, generate a two-imiameter group.
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It will be noted that no one of the many-parameter groups in this table contains
all the generRtors i, .  . of I. The largest group is the first listed, a ten-parameter
group that is a :orm of the projective group of the plane. If one takes the commutators I
of the generators in this group with the remaining linearly indepe.ident generators
available from table 2.1 of I, then one obtains new gev'.-ators not in table 2.1. How-
ever, in the generators the hi are of third degree in x. No further lii.early independent
generators exist in which th* h are of less than third degree and g is nonzero.

10. Errors in finite transformations resulting from use of approximate
generators

The generators used in section 5 to approximately linearize the Lotka-Volterra
equations are typical generators in the sense that they are generators of transformations
that only approximately ieave invariant a set of ki.etic equations. Expanding the
finite transformation operator exp(aU) in powers of the group parameter a, one sees Ithat as a consequence one would have to expect that the effect of exp(aU) on the
differential equation, its solutions, and functions of its solutions, would only be
accurate through O(ax2 ). In particular, eq. (5.2) is linearized only through O(y 2 ).
However, one is interested in having the transfnnation exp(aU) act at every point
on a given solution curve - not just near the origin.

In sections 3 and 5, we have used -critical points in phase space as origins
of coordinates. One can just as well choose a point on or near a tiajectory as the
origin and thereby ensure that in the region of such a point, the error in the coefficients
hi(x) in U is minimal. This allows one to determine trajectories in the reion of any
point P that are accurate through second order in displacements from P. If, using P as
origin, one proceeds as in sections 3, 5 and transforms the system of interest into a
system with known analytic solutions, one can use the inverse transformation to
obtain analytic approximations to trajectories in the region of P. From a more general
staadpoint, expansions about P will ailow accurate investigations Mf solution behaviour
near P when one varies k's.

To illustrate the method, we use it to improve the approximate Lotka-Volterra
trajectory obtained in section 5. There, the analytic reference solution was obtained
by tranmsforming away the quadratic terms in the rate equations using an operator -

exp(au). Since the group generators are accurate to 0(y'), this gave a set of rate I"Iu"ons linar to O(W ), the origin being the sinmular point. The linear equationsw'e solved, and their solution transformed into an approximate solution of the
Lotka- Volterra equation (S 3) by action of exp(-aU).

To improve the solutions obtained in this way, one may procead as follows:
(a) Determne the general form of the generator of the transformation that

linearizes the nonnear equations in the region of a point P on the actualtrajectory of interest - e-9. tie raint whose coordinates are initial
values of the species concentrations.

I
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(ii) Determine the finite transformation that carries out the linearization.

(iii) Obtain and solve the linearized equations.

(iv) Transform the solution of the !ineaizl equation into the required
solution of the noninear equation.

Let the new center of expansion of (5.2) be at a point P with co-irdinates
(a, P3) and define

Yf1 Y1 - 4 Y2=Y21 tlC la)

and

T10 (-a, -13) = eXP(-aUlO -O13L20), YcrP - T10(-a' -13)y (Aayyf). (10.1b)

The action of T10(- a, -13) on eqs. (5.2) gives

dyja/dt = k,*0 + kify~a + k100y~p + kff yQ yO 1.a

dY/dt = k2' + kc'Oy& + kayo+k- ~2

where

k=o =100h12 +13k12, ko'o A 3112

k20= k2+ ak, 12 , kO k, l12

ka a0k212 + ac 21, k 00 k2l + A3212  
( .b

20~1 a2 1  k

We seek at, invariance generator

U =h(Y*) -VyCXU + 9Vk af (10.3)

and a value of a such that exp(aU) acts on y*A and k*0 to transform the kojl and-
k*12terms to zero, leaving only terms of O((y*0) 0 ), 0(y*P), and O((yaU) 3) and

hWghe: One mnay suppose that such a generator is of the form 1c.U,. We first deter-
mine the c. that would be required if the nonlinearity were infinitesimal. To do this,
we multiply k'l 1 and ka20 by an infwtcsiznal e and determine the c,, by requiring
that (I + 6aU) annihilate ekli and ek*20 while leaving k'O, k*O, k' and *
all zero.
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Inspecting table 2.1 of 1, one finds that in the sum one need only consider

the six generators U1i, that generate nonlinear transformations of the concentrations.
Considered as functions of yt,yf, all these generators vanish at y* = 0 = y. It
follows that Yi*, Yf also vanish at the origin, which is thus an invariant point of the
transformation. Table 2.2 of I shows the transformed rate constants ko and k,
depend linearly on both group parameters and rate constants. Consequently, exp(U)
has the same effect on the k0 , and kgi as does (I + U), so that setting e = 6a allows
one to use (1 + U) to obtain the same linearized equation as would be obtained
using exp(U). It cannot, however, be concluded that (I + U) generally acts on the
concentration variables to give transformed variables that are good approximations I
to those obtained by the action of exp(U).

For (1 + &aU) to kill ek*i1, the c. must satisfy the following set of linear
equations:

0- 64(('111 k'[ + CI,2k-,c C211 k* ) '

-ckl*'6 = 6a(c1112k1*0 + C1220+ )12koC1 *

0= 6a( c 1 12 k + c122(2ka'- -c 222 k2)

o b a(-c 1 k*0 + c211(2kcir- ko) + C2 12 k4f

-ek , = Sa( - 2 1k + C2112k" +c2 , 2k,+c 22 ,)

0 = a( - c,0 + C212 kc + C222k-0)

(10.4)
To further particularize the discussion, we approximate a trajectory of the

Lotka-Voterra equations (5.1) through the point (0.922, -0.491). Translating
the origin to this point, the Lotka-Volterra equations become

, -z 0.9437 + 0.491 y* - 1.922A - y*y1
(10.5)

j4 = 0.4693 + 0.509y? + 0.922y? + yoyf. " -

To linearize tmese, we first use (10.4) to determine the parameters a., in the linear-
izing operator I + £ ai UIk, and find them to be

all, -0.3289, a112 = -0.1067, a122  0.4829

0211 = 0.1123, a212  -0.3422, a222 = -0.4467.

....maw inium ii~lmllllll ll I lml l ll l j I I l
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The approximate y linearized equations, obtained using I + ;aiA* Uik, are

0.9437 + 0.1170y - 1.0511Yf +O(y 3 )II 1 (10.7)
yf = 0.4693 + 0.7161 Y0 + 0.1615yf + 0(y').

If one writes the finite transformation Tin the form

T = T22[22 [T21 [2 [T ] 1 ] (10.8)

one finds that Tlinearizes (10.5), yielding (10.7), when the group parameters are

all, = -0.0123, a112 = -0.7473, a122 = 1.6794
(10.9)

a211 = 0.2792, a212 = -0.6817, a222 
= -0.1248.

There are several ways to obtain these values. We calculated them by taking advantage
of the fact that when the kio vanish, T acts linearly on the ki,, and so began with,
initial approximations to the a's which we obtained by solving 10.4). We then simul-
taneously increased k1o and k20 in five stages. At each stage, the a's that zeroed the
kii, to I part in 104 were determined by Newton's method. This required two steps
at each stage, and yielded final values of the a's that zero the k~i/, to within 1 part
in 10'.

The solution of (10.7) passing through P 0 -- at t = 0 obtained on
neglecting terms O(y3) is

V = -0.8349 + 0.8349 cos(0.8673 t)

+ 0.9549 sin(0.8673 t) exp(0.1384 t)
(0o.10)

= 0.8049 + (-0.8049 cos(0.8673 t)

+ 0.6695 sin(0.8673 t) exp(0.1384 t).

Acting on (j ,.p), the inverse transformation T' gives (yf, yJ). In fig. 101, the
II resulting phase trajectory is compared with the exact trajectory and with the trajectory

generated by dropping the quadratic terms in (10.5), and then solving the resulting
linear equation. The errors in the trajectory obtained by transformation arise via
third-order errors in the linearized equations. The errors in the other trajectory arise
from second-order errors in the linearized equations.

It should be noted that the phase trajectory of (5.2) passing through the
point P with coordinates (y,, Y2) = (0.922, -0.491) is a closed curve. However,
when the translated equation (10.5) is inearzed by dropping its bimolecular terms,

I
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0 I
-2- b

-6 -A 0. 0.

Fig. 10.A. Regional approximation to a phase trajectory of the Lotka -
Volterra equation. Curve a is an exact trajectory of (10.5). Curve b is its
regional approximation defined by (10.8, 10.9, 10.10). Curve c is the
approximation to curve a determined by the usual linearization of (10.5).

all its phase curves are open ones. The linearization is not an invariant one in our I
generalUzed sense (cf. 1), and has as a consequence not left the topology of its phase
curves invariant. The same is true of the regional linearization method: (10.7) has
only open curves for phase trajectories because our generators are insufficiently
accurate to ensure that the approximate linearization carried out by T is a sufficiently
good approximation to an invariance transformation. The open phase trajectories of
(10.7) are then of course mapped into open phase trajectories by the transformation
inverse to (10.8) because the transformation is a diffeomorphism. These topological
errors could of course have been avoided had we linearized equations (5-2) in the
way we did in section 5, and then translated the resulting equations to the new origin.
This, however, makes it more difficult to obtain a close approximation to the phase
curves at points far from the singular point at the origin. The method illustrated
here is designed for that purpose. -

11. Higher approximations to generators

All our consderations so far have involved generators obtained by quadratic
approximation. In this section, we will determine higher approximations to the
generators and investigate the ways in which their use modifies results obtained
from the quadratic approximation. It will be remembered that the quadratic approxi.

!N
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mation to the U was obtained by solving eqs. (2.8a), (2.8b) together with the approxi-
mation to (2.8c) obtained by setting U(2) to zero. We begin this section by relaxing
the approximation that U(2) = 0 in (2.8c), and thereby solve the full set of equations
implied by (2.8a, b, c). Inspecting (2.8), one sees that this completely determines
the k terms in the U. Thus, the approximation we are about to discuss fixes the g's
and therefore for each U completely determines the transformation of the kinetic
coefficients carried out by exp(aU).

We start with an example and determine the modifications to the U2 of
table 2.1 of I that one obtains by removing the approximation U(2) = 0 when solving
(2.8a,b,c) of I. Equations (2.8a,b) are not altered and one obtains from (2.8c) the six
determining equations

(g 11 )- 3kOh 11 - k2oh1 12 2 0

(g112 - 2k 21 ) - 2koh,112 - 2k2ohI122 = 0

(g 122 + k1l - 2k 22 ) - kloh 122 - 3k20 h 222 = 0

(g2j) - 3kjoh 2111 - k 2oh 2112 = 0(.

(g212 ) - 2kIOh2112 - 2k 2oh2122 = 0

(9222 + k21 )- kjoh2122 - =k2oh2222 : 0.

On setting U(2) = 0, the terms in parentheses remain and are the terms used previously
to determine the U(- 1) + u(O) + U(1) approximation to U. To obtain corrections
to the resulting U12, one transfers these terms to the right-hand side of the equationsIand solves the resulting inhomogenous equations for the hikl. The three equations
for ne hlJki and the three for the h2Ikl are independent'and each set is of rank 3
if neither kjo nor k2o vanish. Consider this case first. Solving the equations, one
finds that they yield the following U:

SU = Uw_ + (-K 3 4 + 3K2x x - 3Kx x2 + x)

X (el a/ax1 + e2 a/ax,), (11.2)

where K - ko/klo. Here, el and e2 are arbitrary parameters. One may in fact re-
express (11.2) in the form

UO U122 + el Ue, + e2 U. • (11.3)

I
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As U122 is reclaimed 6n setting el, e2 to zero, U122 is itself a solution of the full
set of equations W, = 0. Thus, U12 is one degree more accurate than might have
been expected. It wil also be noted that the operators U and U act only on
x1 , x2 and not upon the rate coefficients k. They are consequently of no interest
in the context of this paper.

Next, consider the case kjo - k2o = 0. It is evident that each of the hilki
may then be chosen arbitrarily, so that one obtains an eight-parameter family of
generators:

U = U122 + Z hqIkl X Xk x1 a/axi. (11.4) I
As in the previous case, the additional generators have no effect upon the rate co-
efficients.

Next, consider the situation where k20 vanishes, while kjo does not. Thenone finds
o f U122 + h1222 x a/ax + h2222 x2 a/ax2 . (11.5) 1

When kjo vanishes and k2o does not, one finds -

U M U122 + hi 1x I !a/ax, + h2 1 11 x a/ax2 . (11.6)

In both cases, the h's are arbitrary and are coefficients of new generators that have I
no effect on the rate constants. In short, in order to obtain corrections to U122 it is
necessary to move on to eq. (2.8d) of I.

This discussion of "corrections" to U1 22 applies to the other Uijk in a parallel
manner. Thc terms in (11.1) not contained in parentheses are the same in each case.
The terms co: ained in parentheses are different in each case, but vanish in the original
approximation. Thus, the generators listed in table 2.1 of I and the finite transforma-
tions in table 2.2 of I are all unchanged when eqs. (2.8a, b, c) of I are solved in toto.

We next investigate the modifications of the U (2) that are required in order
to satisfy (2.8d) of I. Equation (2.8d) may be written in matrix form as

0 = G(2)H (2) + G(O)H( 3 ) + G(°)H (4) = (GH)(4 ) . (11.7)

Here, G(") is a matrix whose entries contain g(l) coefficients and H (") is a vectorof h(") coefficients. The product (GH)O4 ) is of the form
jjg(O)j [0] [0] 1 [h (4)]

(GH)(4 ) = [0] [g(O)] [0] [h (3)] (11.8) 3
[[01 [0] [g(2)] [h(2)]

L_ _I
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From this, it is evident that on insertion into (11.8) of the h(2) and hP ) calculated
by setting to zero the lower order w, one obtains a set of equations which determine
the h(4) without modifying the lower order h( n) . It follows that the functions g(k) in
the generators obtained by solving (2.8a, b, c) of I are exact. Thus, the invariant
functions listed in table 8.1 are exact.

If one wishes to use transformations whose generators are linear combinations
of those listed in table 2.1 of I, it becomes necessary to integrate eqs. (8.3) to deter-
mine the corresponding invariant functions of the rate constants. These also win
remain unaltered by all further improvements in the generators obtained by solving
eqs. (2.8) of I in higher orders of approximation.

An interesting property of the higher order approximations to the U's is
worth noting. Even when a set of Ur in table 2.1 of I close under commutation, it
will not generally be true that the corresponding set of improved generators will
Llose unaer commutation. The commutators will generally contain terms of higher
degree in x than the original generators. However, one may write

U = kU + xU (11.9)

where kU, acts only on the kinetic coefficients and xU acts only on the species
concentrations. If the kU, close under commutation, then the theorem of ref. I1]
of I establishes that the Ur will obey the same commutation relations as the kU when
they satisfy (2.8) of I exactly. Any failure of the approximate generators to obey
these commutation relations is thus an artifact of approximation.

Finally, we consider the general problem of obtaining arbitrarily high-order
approximations to a generator U. Referring back to eqs. (2.8) of I, one sees that
the contribution to U of order p + 1 in x is obtained from the contributions of
order p and p - I by solving linear equations exactly analogous to those depicted
in (11.8) above. As in the case of the example of eqs. (11.1), one obtains solutions
corresponding to generators with g vanishing as well as the desired improvement
U(P+ 1) to the U of interest. This U(P  can then be used together with U(P) to
obtain U( P 2) in an analogous fashion.

12. Conclusions

This paper has utilized basic methods of the theory of Lie groups admitted
by ordinary differential equations to determine large-scale global mappings connecting
systems with differing rate constants.

As we have illustrated, a key consequence of such large changes is their effect
upon the topology of the phase trajectories of a system. As we knew that time-
independent transformations of species concentrations and rate constants could
preserve the topology of phase portraits if the transformations were sufficiently
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restricted, in this paper we investigated time-independent transformations whose
generators are analytic in the rate constants and approximated as analytic in the
concentrations. This is more than sufficient to force the transformations to be local 3
diffeomorphisms of the entire system space - the space of all real values of the con-
centrations and rate constants. By also restricting the range of the group parameter
where necessary, we have ensured that all finite transformations are diffeomorphisms
of the space of real x, k, In addition, because the generators are so chosen that the
space of rate constants is an invariant subspace, the topology of trajectories in concen-
tration space is preserved by the transformations. This has allowed us to determine
the one-parameter groups of changes in rate constants for which the phase trajectories
are qualitatively insensitive in a well defined topological sense. As we have been able
to exactly determine the changes in rate constants that preserve the topology of these
phase portraits, it is possible to give a quantitative treatment of these changes in iaie
constants without further elaboration. 6

Because the determining equations for the group generators could be solved
algorithmically, we have been able to systematically determine all one-parameter I
transformation groups satisfying the imposed conditions.

We are not the first to realize the importance of topological considerations - -

in chemical kinetics: we particularly call attention to the work of Bruce Clark and
his coworkers [10], and to the work of Martin Feinberg [11].

Our work differs from that of these and other investigators because we have
taken advantage of the fact that the process of determining the Lie generators of an
invariance transformation can be made algorithmic. This now makes it possible to
develop a systematic and general treatment of the consequences of large changes
in rate constants upon the behaviour of kinetic systems.

We have not attempted to exactly determine the phase portraits themselves.
There is a fundamental reason for this. Autonomous ordinary differential equations
whose right-haid sides are analytic functions can have "chaotic" solutions. This has
the consequence that the coefficients h(x) in the generators U of this paper need not
be analytic functions; they may, for example, be only infinitely diffekentiable func-
tions. In practice, one may approximate infinitely differentiable functions by a series
of analytic functions, but it would be a mistake to suppose that this approximation
wa of the same value in all regions of the phase space. Experience suggests that
this, and related, mathematical complexity seldom expresses itself in the chaoti. ,
evolution of the reacting systems of common occurrence in the chemical laboratory
and chemical industry. It may be of more common occurrence in biochemical systems.
Whenever the evolution of a kinetic system is nonchaotic, the transformations intro-
duced in this paper allow one to both qualitatively and quantitatively investigate
the sensitivity of phase trajectories to gross changes in rate constants, and to determine
those changes in rate constants which leave some quantitative property unchanged [121.
If the evolution is chaotic, further investigations are necessary.

m ,.. ,ms m~msmwmm l I l l ll IIllllllM ll l 1
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In the interest of simplicity, we have also side-stepped three problems mathe-
matically much less troublesome than that of chaotic evolution. We have not required
that the group parameters a be so restricted so as to ensure that no "real world" concen-
tration becomes negative. We have also not required that mass conservation be preserved
when T(a) acts on a kinetic system. There are no fundamental problems involved
here; it is not difficult to impose the requirements in any particular case - the dif-
ficulty is simply that the variety of cases is immense and diverse. Finally, we have
not dealt with problems that arise when many-parameter Lie groups, whose para.
meters are only restricted in range by the structural properties of the group, have
further restrictions imposed by the requirement that the group action on a space
of real variables yields only real variables. In our case, the difficulty appears when
abstractly allowed parameter values carry points with finite coordinates to cooordinates
whose value is ±-. A considerable simplification occurs if one proceeds as is done
in the theory of projective transformations; this, however, changes the topology of
the space of x, k and introduces conceptual elaborations that we consider to be
inappropriate in an introductory work such as this.

A variety of applications can be envisioned for the time-independent trans-
formations of this paper. Because so much of the analysis involves only linear algebra,
the methods are applicable to systems involving many chemical species. Further
applications to the linearization of kinetics and to lumping and control problems
appear to hold particular promise. The methods we have introduced for determining
the subspace of x, k containing phase space trajectories of a fixed topology are
methods that are systematic and apply directly to systems involving an arbitrary
number of reactants: they may be used to obtain a greal deal of qualitative informa-
tion about these systems. The use of the methods to obtain regional analytic approxi-
mations to solutions of nonlinear kinectic equations also appear promising.

We are currently extending Lie methods to reactions involving diffusion [13].
It is known that reaction-diffusion equations are invariant under a much larger class

of transformations than those considered herein and in I; in the general case, it will
be necessary to allow transformations that depend upon partial derivatives of arbitrary
order 114].
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